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ABSTRACT
Prior probability shift is a phenomenon where the training and test

datasets differ structurally within population subgroups. This phe-

nomenon can be observed in the yearly records of several real-world

datasets, for example, recidivism records and medical expenditure

surveys. If unaccounted for, such shifts can cause the predictions of

a classifier to become unfair towards specific population subgroups.

While the fairness notion called Proportional Equality (PE) accounts
for such shifts, a procedure to ensure PE-fairness was unknown. In
this work, we design an algorithm, called CAPE, that ensures fair
classification under such shifts. We introduce a metric, called preva-

lence difference (PD), which CAPE attempts to minimize in order to

achieve fairness under prior probability shifts. We theoretically es-

tablish that this metric exhibits several properties that are desirable

for a fair classifier. We evaluate the efficacy of CAPE via a thorough

empirical evaluation on synthetic datasets. We also compare the

performance of CAPE with several state-of-the-art fair classifiers on

real-world datasets like COMPAS (criminal risk assessment) and

MEPS (medical expenditure panel survey). The results indicate that

CAPE ensures a high degree of PE-fairness in its predictions, while

performing well on other important metrics.
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1 INTRODUCTION
Machine learning techniques are being increasingly applied in mak-

ing important societal decisions, such as criminal risk assessment,
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school admission, hiring, sanctioning of loans, etc. Given the impact

and sensitivity of such predictions, there is warranted concern re-

garding implicit discriminatory traits exhibited by these techniques.

Such discrimination may be detrimental for certain population sub-

groups with a specific race, gender, ethnicity, etc, and may even

be illegal under certain circumstances [2]. These concerns have

spurred vast research in the area of fair classification [5, 8, 12–

14, 17, 22, 32, 41, 52]. Most of these papers aim to establish fairness

notions for a group of individuals (differentiated by their race, gen-

der, etc.), and are known as group fairness notions. The popular
group-fairness notions are Disparate Impact (DI) [10, 19, 29, 48],
Statistical Parity (SP) [15, 31, 50], Equalized Odds (EO) [26, 33, 46],
and Disparate Mistreatment [11, 47]. These group fairness notions

have been used extensively to audit black-box classifiers for dis-

crimination [7, 43]. An inherent requirement of such audits is to

have a test dataset of (statistically) significant size.

However, ensuring group fairness in classifiers presents several

challenges. Fairness constraints such as DI and EO turn out to be

non-convex, therebymaking the optimization problem—maximizing

accuracy subject to fairness constraints—difficult to solve efficiently.

Several papers either focus on finding near-optimal near-feasible

solutions [11, 16], or provide convex surrogates of the non-convex

constraints [23, 48] in order to ensure fairness. Also, there ex-

ist heuristics to solve the problem which can be categorized into

pre-processing, in-processing and post-processing techniques. Pre-

processing [29] and post-processing [30, 39] techniques address

fairness concerns in the input (training dataset) and output (pre-

dictions) of a classifier, respectively, while leaving the classifier

unmodified. In-processing techniques [51], in contrast, address fair-

ness concerns during model generation. These solutions assume

that the training and test data are identically and independently

drawn from some common population distribution, and thus suffer

in the presence of distributional changes (we provide empirical

evidence for this in Section 5).

Existing literature has addressed the problem of fair classification

based on the fairness concepts of fair allocation. Balcan et al. [3] in-

vestigated a multi-class classification problem with heterogeneous

preferences over the classes, and defined an envy-free classifier to

be one where the prediction labels do not cause envy among the

individuals in a given dataset. They further explored the generaliz-

ability of envy-free classification, that is, whether envy-freeness on

a given dataset ensures almost envy-freeness with respect to the

underlying distribution with high probability. Hossain et al. [27]

defined relaxations of envy-freeness for ensuring fairness among

different population subgroups. On the other hand, Zafar et al. [49]

and Ustun et al. [44] applied the solutions concepts of fair allocation

literature to define and explore preferential guarantees—each popu-

lation subgroup (say, women or men) prefers the set of decisions

they receive over the set of decisions they would have received
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had they collectively belonged to the other group. These fairness

definitions differ in the way the utility of the agents or a group

of agents are assumed, detailed in Section 2.1. Along similar lines,

we show that an appropriate utility function, together with the

definition of proportional fair share (from allocation literature), can

help capture the fairness of predictions.

A possible, and less studied, cause for unfairness in predictions in-

volve distributional changes between the training and test datasets.

A recent paper by Mandal et al. [36] proposes a fair classifier that is

robust to weighted perturbations of the training samples. However,

disparities can be introduced when the sub-populations evolve dif-

ferently over time [4]. There are important real-world scenarios

where prior probability shift, a type of distributional change, occurs.
Informally, a prior probability shift occurs when the fraction of

positively labeled instances differ between the training and the

test datasets (see Section 2.2 for a formal definition). A concrete

example is the COMPAS dataset [40]. COMPAS stands for “Correc-

tional Offender Management Profiling for Alternative Sanctions".

The dataset contains demographic information and criminal his-

tory of defendants, and records whether they recommitted a crime

within a certain period of time. We observe that, among the valid

records screened in the year 2013, the fraction of Caucasian and

African-American re-offenders were 0.327 and 0.486, respectively.

However, in 2014, these fractions were 0.636 and 0.706, respectively.

This indicates that the extent to which the prior probability differs

among Caucasian and African-American defendants, between the

records of 2013 and 2014, is not the same.

If such distributional changes are unaccounted for, a classifier

may end up being unfair towards the population subgroups which

exhibit prior probability shifts; e.g., if the rate of recidivism among a

specific sensitive group reduces drastically, then a classifier trained

with a higher rate of recidivism can create extreme unfairness to-

wards individuals of that sub-population. A fairness notion called

Proportional Equality (PE) [9, 28] appears to be the most appropriate

for addressing prior probability shifts among population subgroups

(see Section 3 for definition). However, their results stop short of

providing a procedure to ensure PE-fair predictions.

OurContributions. To the best of our knowledge, this paper is the
first to propose an end-to-end solution for ensuring fair predictions

in the presence of prior probability shifts.

(1) We design a system, called CAPE (Combinatorial Algorithm

for Proportional Equality), targeted towards making PE-fair
predictions (Section 4). The system uses a novel combination

of quantification techniques, sampling, and an ensemble of

classifiers.

(2) We introduce ametric called Prevalence Difference (PD), which
CAPE attempts to minimize in order to ensure fairness. We

theoretically establish that the PD metric exhibits several

desirable properties (Theorems 4.1, 4.2)—in particular, we

show that maximizing the accuracy of any subgroup is not

at odds with minimizing PD. This metric also provides in-

sights into why the predictions of CAPE show a high degree

of PE-fairness (Theorem 4.4). We discuss these in Section 4.1

and 4.2.

(3) We perform a thorough evaluation of CAPE on synthetic and

real-world datasets, and compare with several state-of-the-

art group-fair classifiers. In Section 5, we provide empirical

evidence that CAPE provides highly PE-fair predictions, while
performing well on other metrics.

2 PRELIMINARIES AND NOTATIONS
Let

ˆℎ : X ↦→ Y be a prediction function, defined in some hypothesis

spaceH , where X ⊂ R𝑚 is the𝑚-dimensional feature space and

Y = {0, 1} is the label space. We refer to instances with label 1 as be-

ing positively labeled (with the remaining instances being referred

to as negatively labeled). The goal of a classification problem is to

learn the function
ˆℎ which minimizes a target loss function, say,

misclassification error P[ ˆℎ(𝑋 ) ≠ 𝑌 ] (variables 𝑋 and 𝑌 denote fea-

ture vectors and labels, respectively). However, if these predictions

ˆℎ(·) are used for societal decision making, it becomes crucial to

ensure lower misclassification error not only on an average, but also

within each group defined by their sensitive attribute values such

as race, gender, ethnicity, etc. Dropping these sensitive attributes

blindly from the dataset may not be enough to alleviate discrimina-

tion, since some non-sensitive features can be closely correlated to

the sensitive attributes [14, 26, 53]. Hence, most existing solutions

assume access to sensitive attributes. For simplicity, assume a single

sensitive attribute that partitions the instance space into |𝐺 | popula-
tion subgroups. Now, the goal is to learn

ˆℎ : X×[𝐺] ↦→ Y satisfying

certain group-fairness criteria, where we reuse the symbol X to

represent the feature space comprising non-sensitive attributes

only, and [𝐺] denotes the set {0, 1, . . . ,𝐺 − 1}). We use the variable

𝑍 ∈ [𝐺] to denote group membership. Note that one can encode

multiple sensitive attributes, such race and gender, together into the

set [𝐺]. For example, two sensitive attributes gender and race can

be encoded as four subgroups: female African-American, female

Caucasian, male African-American, male Caucasian.

We assume that training set 𝐷 = {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 )𝑁𝑖=1} is drawn from

an unknown joint distributionP overX×[𝐺]×Y. The performance

of the classifier is measured using a new set of data, referred as test
dataset D = {(𝑥 𝑗 , 𝑧 𝑗 , 𝑦 𝑗 )𝑛𝑗=1}, by observing how accurate and fair

the
ˆℎ(𝑥 𝑗 )s are with respect to the true labels 𝑦 𝑗 s.

Throughout, we use variables 𝑋 , 𝑌 , 𝑍 to denote feature vectors,

labels, and sensitive values, respectively. In the absence of fairness

concerns, the sensitive feature 𝑍 can be thought of as a dimension

in the feature space X.

2.1 Revisiting Parity-based Notions via
Envy-Freeness

In this section, we show that several existing parity-based notions of

fairness can be formulated in terms envy-freeness using appropriate
utility functions. Let 𝑢𝑧

𝐹
( ˆℎ,D) be the real-valued utility of a group 𝑧

for a fairness notion 𝐹 , computed using the predictions of a classifier

ˆℎ on a datasetD. A group 𝑧 envies another group 𝑧′, if the following
holds:

𝑢𝑧
𝐹
( ˆℎ,D) < 𝑢𝑧

′
𝐹
( ˆℎ,D) .



Thus, a set of predictions { ˆℎ(𝑥)}𝑥 ∈D is said to be envy-free if and
only if, for all groups 𝑧 ∈ 𝐺 , the following holds:

𝑢𝑧
𝐹
( ˆℎ,D) ≥ 𝑢𝑧

′
𝐹
( ˆℎ,D) for all groups 𝑧′ ∈ 𝐺.

We now list the utility functions that appropriately defines ex-

isting parity-based notions:

(1) Disparate Impact Free (DI) or Statistical Parity (SP): the frac-

tion of positively predicted individuals are equal in all sub-

groups, i.e., for all 𝑧, 𝑧′ ∈ 𝐺 :

P( ˆℎ(𝑋 ) = 1 | 𝑍 = 𝑧) = P( ˆℎ(𝑋 ) = 1 | 𝑍 = 𝑧′)
The corresponding utility function is

𝑢𝑧
𝑆𝑃
( ˆℎ,D) = |{𝑖 ∈ D :

ˆℎ(𝑥𝑖 ) = 1, 𝑧𝑖 = 𝑧}|
|{𝑖 ∈ D : 𝑧𝑖 = 𝑧}| .

(2) Equal False Positive Rates (FPR): The false positive rates are
equal for all subgroups. i.e., for all 𝑧, 𝑧′ ∈ 𝐺 :

P( ˆℎ(𝑋 ) = 1 | 𝑌 = 0, 𝑍 = 𝑧)

= P( ˆℎ(𝑋 ) = 1 | 𝑌 = 0, 𝑍 = 𝑧′) .
The corresponding utility function is

𝑢𝑧
𝐹𝑃𝑅
( ˆℎ,D) = |{𝑖 ∈ D :

ˆℎ(𝑥𝑖 ) = 1, 𝑦𝑖 = 0, 𝑧𝑖 = 𝑧}|
|{𝑖 ∈ D : 𝑦𝑖 = 0, 𝑧𝑖 = 𝑧}| .

(3) Equal False Discovery Rates (FDR): The false discovery rates

are equal in all subgroups. i.e., for all 𝑧, 𝑧′ ∈ 𝐺 :

P(𝑌 = 0 | ˆℎ(𝑋 ) = 1, 𝑍 = 𝑧)

= P(𝑌 = 0 | ˆℎ(𝑋 ) = 1, 𝑍 = 𝑧′)
The corresponding utility function is

𝑢𝑧
𝐹𝐷𝑅
( ˆℎ,D) = |{𝑖 ∈ D :

ˆℎ(𝑥𝑖 ) = 1, 𝑦𝑖 = 0, 𝑧𝑖 = 𝑧}|
|{𝑖 ∈ D :

ˆℎ(𝑥𝑖 ) = 1, 𝑧𝑖 = 𝑧}|
.

2.2 Prior Probability Shift
Prior probability shift [34, 37, 42] occurs when the prior class-

probability P(𝑌 ) (also known as prevalence) changes between the

training and test sets, but the class conditional probability P(𝑋 |𝑌 )
remains unaltered. Such changes, within a sub-population, occur in

many real-world scenarios, i.e., P(𝑋 |𝑌=1, 𝑍=𝑧) remains constant

but P(𝑌=1|𝑍=𝑧) changes between training and test sets.

Next, we make a brief digression to explain quantification, a

technique used for estimating prior probabilities in a test dataset

in the presence of prior probability shifts. We show in a later sec-

tion how we leverage quantification to address the problem of fair

classification under prior probability shifts.

2.3 Quantification Problem
Quantification learning (or prevalence estimation) is a supervised
learning problem, introduced by Forman [20]. It aims to predict an

aggregated quantity for a set of instances. For example, a company

may be interested in estimating the percentage of users who are

likely to buy their product, using tweets received in the recent

few weeks [24]. The goal is to learn a function, called quantifier
𝑞 : XN ↦→ [0, 1], that outputs an estimate of the true prevalence of

a finite, non-empty and unlabeled test set D ∼ XN. As highlighted
by Forman, quantification is not a by-product of classification [24].

In fact, unlike assumptions made in classification that the training

and test dataset are drawn from the same distribution, quantifica-

tion techniques account for changes in prior probabilities P(𝑌 |𝑍 )
within subgroups, while assuming P(𝑋 |𝑌, 𝑍 ) remain the same over

the training and test datasets. This allows quantifiers to perform

better than naïve classify and count techniques [21]—that train

a classifier using the training dataset and count the number of

predicted positive labels in the test dataset.

Some commonly used algorithms to construct quantifiers are

Adjusted Classify and Count (ACC) [21], Scaled Probability Average
(SPA) [6], and HDy [25]. These algorithms can be used to estimate the

prevalence of a particular population subgroup in the test dataset.

For ease of exposition, we describe a simple quantification tech-

nique, ACC. We define some terms to aid our discussion.

• True positives: TP :=

���{𝑖 : 𝑦𝑖 = 1 &
ˆℎ(𝑥𝑖 ) = 1}

���
• True negatives: TN :=

���{𝑖 : 𝑦𝑖 = 0 &
ˆℎ(𝑥𝑖 ) = 0}

���
• False positives: FP :=

���{𝑖 : 𝑦𝑖 = 0 &
ˆℎ(𝑥𝑖 ) = 1}

���
• False negatives: FN :=

���{𝑖 : 𝑦𝑖 = 1 &
ˆℎ(𝑥𝑖 ) = 0}

���
• True positive rate: TPR := TP

(TP+FN)
• False positive rate FN := FP

(FP+TN)
The ACC method learns a binary classifier from the training set

and estimates its true positive rate (TPR) and false positive rate (FPR)
via 𝑘-fold cross-validation. Using this trained model, the algorithm

counts the number of cases on which the classifier outputs positive

on the test dataset, which is subsequently adjusted to obtain an

estimate of the true prevalence. Let 𝑝 denote the true prevalence

(i.e., fraction of true positives):

𝑝 :=
#true_positives

#test_data_points
=

TP + FN
TP + FP + TN + FN . (1)

Let 𝑝 ′ denote the fraction of predicted positives:

𝑝 ′ :=
#predicted_positives
#test_data_points

=
TP + FP

TP + FP + TN + FN . (2)

Equations 1 and 2 can be used to relate the fraction of predicted

positives 𝑝 ′ and the true positives 𝑝 , as:

𝑝 ′ = 𝑝 · TPR + (1 − 𝑝) · FPR

Therefore, the true fraction of positives (true prevalence) can be

estimated via the equation:

𝑝 =
𝑝 ′ − FPR
TPR − FPR .

The use of TPR and FPR from the training set can be justified by

the assumption that 𝑃 (𝑋 |𝑌 ) remains same in the training and test

datasets. This simple algorithm turns out to provide good estimates

of prevalences under prior probability shifts.

However, for our experiments, we use SPA [6], an algorithm

similar to ACC. Instead of a classifier, SPA uses a probability estima-

tor, and the averages are computed over the predicted posterior

probabilities rather than the predicted labels and thus known as

probabilistic classify and count (PCC). This technique turns out to be
more robust to variations in the prior probability estimates when

the dataset contains only a few samples [6].



3 PROPORTIONAL EQUALITY
Consider binary classification as being the problem of allocating

decisions or labels among a set of individuals (data points). Now,

given a test dataset D and the predictions
ˆℎ(·) on D, let the utility

of group 𝑧 be defined using the metric prediction prevalence 𝜌𝑧
D
,

which is the fraction of population from the subgroup 𝑧 who are

assigned a positive label by the classifier. Formally,

𝑢𝑧 ( ˆℎ,D)=𝜌𝑧D :=

���{(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ) ∈D : ˆℎ(𝑥𝑖 )=1, 𝑧𝑖 =𝑧}���
|{(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ) ∈ D : 𝑧𝑖 = 𝑧}| (3)

Assume that the label 1 is treated as “favorable” by all individuals

of all groups (e.g., in a loan approval scenario, the label 1 denotes

individuals whose loans are sanctioned). Hence, all individuals

prefers the label 1 over the label 0. Now, a group 𝑧 envies another
group 𝑧′ if 𝜌𝑧

D
< 𝜌𝑧

′
D
.

In order to ensure an envy-free allocation, the classifier’s predic-

tions need to satisfy 𝜌𝑧
D
= 𝜌𝑧

′
D
for every pair of groups 𝑧, 𝑧′ (recall

the definition of disparate impact free). Forcing such equality in

predictions may not be appropriate when the true prevalences in the

test dataset differ significantly between two subgroups. True preva-
lence 𝜌𝑧

D
is defined as the fraction of population from subgroup 𝑧

whose true labels in the dataset D are positive.

𝜌𝑧D :=
|{(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ) ∈ D | 𝑦𝑖 = 1, 𝑧𝑖 = 𝑧}|
|{(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ) ∈ D | 𝑧𝑖 = 𝑧}| . (4)

If 𝜌𝑧
D
is significantly greater than 𝜌𝑧

′
D
, then a set of predictions

that ensures 𝜌𝑧
D

= 𝜌𝑧
′
D
is unfair to group 𝑧. A property, which is

arguably more fair, requires 𝜌𝑧
D
to be proportionally equal to (or

greater than) the prediction prevalence of group 𝑧′, with respect

to the ratio of their true prevalences. This concern is formalized as

a fairness notion called proportional equality (PE) [9]. A classifier

is said to be PE-fair for a subgroup 𝑧, if the following holds for all

other subgroups 𝑧′ ∈ [𝐺]: 𝜌𝑧D

𝜌𝑧
′
D

≥ 𝜌𝑧D

𝜌𝑧
′
D

. Instead of defining PE as a

“binary” property—either a classifier is PE-fair or not—it has been
extended to define the degree of discrimination against a group 𝑧,

with respect to 𝑧′, as: PE𝑧,𝑧
′

D
=

���� 𝜌𝑧D𝜌𝑧′D − 𝜌𝑧D

𝜌𝑧
′
D

����. The lower the value of
PE𝑧,𝑧

′

D
, the fairer is the classifier. The fairness definition compares

the predictions with the true labels of the same dataset. Thus, it
accounts for the fact that the true prevalences in the test dataset D
may have undergone prior probability shifts—PE fairness requires

the ratio 𝜌𝑧
D
/𝜌𝑧′
D
to match with 𝜌𝑧

D
/𝜌𝑧′
D
rather than 𝜌𝑧

𝐷
/𝜌𝑧′

𝐷
, where

𝐷 is the training dataset.

While Biswas and Mukherjee [9] defined an appropriate fairness

notion, the problem of ensuring fair predictions under prior proba-

bility shifts remained open. In the next section, we will define an

algorithm that addresses this problem. Note that any such algo-

rithm must deal with the following key challenges: (1) PE𝑧,𝑧
′

D
≤ 𝜖

(for a small 𝜖) is a non-convex constraint. Thus, it is hard to directly

optimize for accuracy subject to this constraint for all 𝑧, 𝑧′ ∈ [𝐺].
(2) The definition of PE uses true prevalences of the test datasets 𝜌𝑧

D
,

which are unavailable to the classifier during the prediction phase.

Thus, an algorithm needs to estimate the unknown prevalence of

the test dataset.

We now provide a comprehensive solution to the fairness prob-

lem via a novel combination of quantification techniques, sampling

techniques, and an ensemble of classifiers.

4 CAPE
In this section, we introduce CAPE (Combinatorial Algorithm for

Proportional Equality). The algorithm has two phases: training and

prediction. Figures 1 and 2 show a high level overview of the work-

flow of CAPE during the two phases. CAPE takes as input a training

dataset 𝐷 and a vector Θ = (𝜃1, . . . , 𝜃𝑘 ) ∈ [0, 1]𝑘 . CAPE trains an

ensemble of classifiers, with the desired prediction prevalence of

each classifier being one of the 𝜃 ∈ Θ values. Moreover, CAPE is

separately trained for each group 𝑧 ∈ [𝐺], since we hypothesize
that the relationship between the non-sensitive features 𝑋 and the

outcome variable 𝑌 may differ across groups. Thus, each group is

best served by training classifiers on datasets obtained from the

corresponding group
1
. Such decoupled classifiers are also consid-

ered by Dwork et al. [18], but they do not handle prior probability

shifts.

At the end of the training phase, we obtain the following output

for each subgroup 𝑧:

(1) a set of |Θ| classifiers, each trained using a sampling of the

training dataset obtained by the module PP-SAMPLING, which
takes as input a prevalence parameter 𝜃 ∈ Θ and a training

dataset with 𝑁𝑧 data points. It randomly selects, with replace-

ment, 𝜃 × 𝑁𝑧 instances with 𝑌=1 and (1 − 𝜃 ) × 𝑁𝑧 instances

with 𝑌=0. Thus, it outputs a sample of size 𝑁𝑧 . Each classifier is

thus specialized in providing accurate predictions on datasets

with particular prevalences.

(2) a quantifier 𝑞𝑧 (·), generated by the Q-ALG module, which is

subsequently used in the prediction phase of CAPE to estimate

the true prevalence of the test dataset, 𝜌𝑧
D
. Separate quantifiers

are created for each group since the extent of prior probability

shifts may differ across groups.

Figure 1: System diagram for the training phase of CAPE.

During the prediction phase, for each group 𝑧, an estimate of the

prevalence of the test data D𝑧 is obtained using 𝑞𝑧 (·). This estimate

is then used to choose the classifier 𝐽𝑧 (among the |Θ| classifiers
{ ˆℎ𝑧

𝜃1
, . . . , ˆℎ𝑧

𝜃𝑘
} generated during the training phase) that minimizes

1
Training a separate classifier for a small-sized group may be inappropriate. For the

datasets we consider, this issue never arises.



Figure 2: System diagram for the prediction phase of CAPE.

the prevalence difference metric (Section 4.1). Finally, CAPE outputs

the predictions of the classifier 𝐽𝑧 on the test set D𝑧 .

Algorithm 1 CAPE

Modules to be plugged in: C-ALG and Q-ALG.

Training Phase:
Input: A vector of prevalence parameters Θ := (𝜃1, . . . , 𝜃𝑘 } and
training dataset 𝐷 .

Step 1: Partition 𝐷 = {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 )𝑁𝑖=1} based on 𝑧𝑖 values.

𝐷𝑧 ← {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ) ∈ 𝐷 | 𝑧𝑖 = 𝑧} for each group 𝑧.

Step 2: Create quantifiers, one for each 𝑧.

𝑞𝑧 (·) ← Q-ALG(𝐷𝑧
).

Step 3: Create a set of 𝑘 classifiers, for each 𝑧.

for all 𝜃 in {𝜃1, . . . , 𝜃𝑘 } do
𝑇𝑧 ← PP-SAMPLING (𝐷𝑧 , 𝜃 ).
ˆℎ𝑧
𝜃
(·) ← C-ALG (𝑇𝑧

).

end for
Output: 𝑞𝑧 and ( ˆℎ𝑧

𝜃 𝑗
)𝑘
𝑗=1

.

Prediction Phase:
Input: Test dataset D, and the quantifiers and classifiers obtained

after the training phase.

Step 1: Partition D = {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 )𝑛𝑖=1} based on 𝑧𝑖 values.

D𝑧 ← {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ) ∈ D | 𝑧𝑖 = 𝑧} for each group 𝑧.

Step 2: Estimate prevalences 𝑞𝑧 (D𝑧) using the quantifiers built
in the training phase.

Step 3: Compute the prediction prevalences on D𝑧 obtained by

each classifier { ˆℎ𝑧
𝜃1
, . . . , ˆℎ𝑧

𝜃𝑘
}.

for all 𝜃 in {𝜃1, . . . , 𝜃𝑘 } do
𝑦𝑖
𝜃
← ˆℎ𝑧

𝜃
(𝑥𝑖 ) for all 𝑖 ∈ {1, . . . , |D𝑧 |}.

𝜌𝑧
𝜃
← |{𝑖 ∈ D𝑧 : 𝑦𝑖

𝜃
== 1}|/|D𝑧 |.

end for
Step 4: Choose the best classifier in terms of estimated preva-

lence difference (Equation 5).

𝐽𝑧←argmin

𝜃 ∈Θ
|𝜌𝑧
𝜃
− 𝑞𝑧 (D𝑧) |

Output: The predictions 𝑦𝑧
𝐽𝑧
for group 𝑧.

Algorithm 1 provides details about CAPE. Note that CAPE pro-

vides the flexibility to plug in any classification and quantification

algorithm into the modules C-ALG and Q-ALG. Key to CAPE is the

prevalence difference (PD) metric, used in Step 3 of the prediction

phase. We formalize the metric and discuss some of its properties

in the next section.

4.1 Prevalence Difference
We define the prevalence difference (PD) metric as:

Δ𝑧D :=
��𝜌𝑧D − 𝜌𝑧D�� for each group 𝑧. (5)

where, 𝜌𝑧
D
and 𝜌𝑧

D
denote the predicted and true prevalences of the

dataset D (as defined in Equations 3 and 4, respectively). Hereafter,

we drop the subscripts and superscripts on Δ, 𝜌 and 𝜌 whenever

we refer to the population in aggregate.

Note that the true prevalence 𝜌𝑧
D
of test set D cannot be used

during the prediction phase. Thus, we use the value 𝑞𝑧 (D𝑧) to
approximate 𝜌𝑧

D
. This allows us to use 𝑞𝑧 (D𝑧) in the definition of

PD to pick the best classifier 𝐽𝑧 for the group 𝑧. Also, unlike PD, other
performance metrics like accuracy, FPR or FNR are not suitable

for choosing the best classifier since these metrics require the true
labels of the test datasets. We use the PD metric for: (1) choosing

the best classifier in the prediction phase and (2) measuring the

performance of the predictions, since a high value of Δ𝑧 implies

the inability to account for prior probability shift for the group 𝑧.

The PD metric is somewhat different from the fairness metrics

aiming to capture parity between two sub-populations. Such fair-

ness metrics may often require sacrificing the performance of a

classifier towards one group tomaintain parity with the other group.

However PD, in itself, believes that the two groups should be treated
differently since each group may have gone through a different

change of prior probabilities. A high Δ𝑧 indicates a high extent of

harm caused by the predictions made towards the group 𝑧. Thus,

to audit the impact of a classifier’s predictions on a group 𝑧, it is

important to evaluate for Δ𝑧 , along with accuracy, FNR and FPR
values within each group.

Next, we show that a perfect classifier (100% accurate) attains

zero prevalence difference. Additionally, we show that a classifier

with high accuracy on any subgroup also attains a very low Δ for

that subgroup. Empirically, we observe that low Δ results in PE-fair
predictions.

4.2 Theoretical Guarantees
We first show a simple result—a classifier whose predictions are

exactly the ground truth also attains Δ = 0, thereby satisfying our

selection criterion for picking the best classifier. Note that a perfect

classifier may not satisfy fairness notions such as disparate impact

and statistical parity.

Theorem 4.1. A perfect classifier always exhibits Δ = 0.

Proof. Let us consider a perfect classifier
ˆℎ(·) whose predictions

are equal to the ground truth i.e.,
ˆℎ(𝑥) = 𝑦 (𝑥) for all instances

𝑥 ∈ X, where ˆℎ(𝑥) is the label predicted by the classifier for the

instance 𝑥 . Thus, for each 𝑧, the true prevalence 𝜌𝑧 is equal to the

prediction prevalence 𝜌𝑧 , according to the definitions in Equations

3 and 4. This implies Δ𝑧 = |𝜌𝑧 − 𝜌𝑧 | = 0. □

Theorem 4.2. If the overall accuracy of a classifier ˆℎ(·) is (1 − 𝛿),
where 𝛿 ∈ (0, 1) is a very small number, then the overall prevalence



difference for the classifier ˆℎ is Δ = 𝛿 − 2min

{
FN
𝑛 , FP𝑛

}
, where FN and

FP denote number of false negatives and false positives respectively
in the test dataset with 𝑛 instances. This further implies that Δ ≤ 𝛿 .

Proof. Let ( ˆℎ(𝑥𝑖 ))𝑛𝑖=1 denote the predictions of a classifier ˆℎ(𝑥𝑖 )
on a test dataset {(𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1}. Recall the following notations, which
we use for the proof:

TP :=

���{𝑖 : 𝑦𝑖 = 1 &
ˆℎ(𝑥𝑖 ) = 1}

��� (# true positives).
TN :=

���{𝑖 : (𝑦𝑖 = 0 &
ˆℎ(𝑥𝑖 ) = 0}

��� (# true negatives).
FP :=

���{𝑖 : 𝑦𝑖 = 0 &
ˆℎ(𝑥𝑖 ) = 1}

��� (# false positives).
FN :=

���{𝑖 : 𝑦𝑖 = 1 &
ˆℎ(𝑥𝑖 ) = 0}

��� (# false negatives).
Note that TP+TN+FP+FN = 𝑛. Let 𝜌 and 𝜌 be the true and prediction

prevalences. Then, the prevalence difference can be written as:

Δ = |𝜌 − 𝜌 | =
����TP + FN𝑛

− TP + FP
𝑛

���� = |FN − FP|𝑛
(6)

Let the accuracy of a classifier on a test dataset be (1 − 𝛿) where
𝛿 ∈ (0, 1). Then,

TP + TN
𝑛

= 1 − 𝛿 ⇒ FN + FP
𝑛

= 𝛿 (7)

Without loss of generality, let us assume FN ≥ FP. Thus, Equa-
tion 7 can be written as:

FN − FP + 2FP
𝑛

= 𝛿 ⇒ FN − FP
𝑛

= 𝛿 − 2FP

𝑛
(8)

Similarly, assuming FP ≥ FN we obtain

FP − FN
𝑛

= 𝛿 − 2FN

𝑛
(9)

Combining Equation 6, 8 and 9, we get the following:

Δ =
|FP − FN|

𝑛
= 𝛿 − 2min

{
FN

𝑛
,
FP

𝑛

}
≤ 𝛿. (10)

Thus, when accuracy is greater than (1 − 𝛿), the prevalence differ-
ence is at most 𝛿 . This completes the proof. □

Note that Theorem 4.2 can also be used to guarantee that highly

accurate predictions for a group 𝑧 implies a low value for Δ𝑧 . This
leads to Corollary 4.3.

Corollary 4.3. If accuracy of a classifier for any sub-population
𝑧 is greater than 1 − 𝛿 , then Δ𝑧 ≤ 𝛿 .

The next theorem provides insights into why CAPE works. Intu-

itively, Theorem 4.4 states that if the quantification and classifica-

tion errors are bounded above by 𝛿1 and 𝛿2 respectively, then the

true PD value for the predictions made by CAPE is bounded above

by 𝛿1 + 𝛿2 + 𝜖 . Here, 𝜖 is the maximum difference between two

consecutive values in the vector Θ. This implies that improving

Q-ALG’s prevalence estimates and C-ALG’s accuracies necessarily re-

sults in lower PD value for each subgroup in the predictions of CAPE.

This, in turn, results in low value of PE𝑧,𝑧
′

D
, except for a few corner

cases. During our empirical evaluation on real-world datasets, such

corner cases did not arise, and we observed the predictions of CAPE
to exhibit low PE and PD values.

In the subsequent discussion, we drop the parameter D from the

notations 𝑞, 𝜌 and 𝜌 since we exclusively refer to these values in

the context of the test dataset D.

Theorem 4.4. Let Θ = { 𝜖
2
, 3𝜖
2
, 5𝜖
2
. . . ,

(
𝑘 − 1

2

)
𝜖} where 𝜖 ∈ (0, 1)

and 𝑘 =
⌊
1

𝜖 +
1

2

⌋
. For a group 𝑧, and test dataset D, let the quantifier

be such that |𝜌𝑧 −𝑞𝑧 | ≤ 𝛿1, and the classifiers be such that |𝜃 𝑗 −𝜌𝑧𝑗 | ≤
𝛿2 for all 𝑗 ∈ {1, . . . , 𝑘}, for small 𝛿1 and 𝛿2. Then, for the best
classifier

𝐽 := argmin

𝑗 ∈{1,...,𝑘 }
|𝜌𝑧𝑗 − 𝑞

𝑧 |,

the following holds: |𝜌𝑧 − 𝜌𝑧
𝐽
| ≤ 𝛿1 + 𝛿2 + 𝜖

2
.

Proof. For the best classifier 𝐽 , the prevalence difference of a

group 𝑧 can be upper bounded using triangle inequality:

|𝜌𝑧 − 𝜌𝑧
𝐽
| ≤ |𝜌𝑧 − 𝑞𝑧 | + |𝑞𝑧 − 𝜌𝑧

𝐽
|

≤ 𝛿1 + |𝑞𝑧 − 𝜌𝑧𝐽 | (11)

Inequality (11) is implied by the assumption on the quantifier’s

performance, i.e., |𝜌𝑧 − 𝑞𝑧 | ≤ 𝛿1. To provide an upper bound for

|𝑞𝑧 − 𝜌𝑧
𝐽
|, we pick 𝐽 ′ such that

𝐽 ′ = argmin

𝑗 ∈{1,...,𝑘 }
|𝑞𝑧 − 𝜃 𝑗 |, where 𝜃 𝑗 =

(
𝑗 − 1

2

)
𝜖.

Since 𝑞𝑧 ∈ [0, 1], it is at most 𝜖/2 away from one of the fractional

values in { 𝜖
2
, 3𝜖
2
, 5𝜖
2
. . . ,

(
𝑘 − 1

2

)
𝜖}. Therefore,

|𝑞𝑧 − 𝜃 𝐽 ′ | ≤ 𝜖/2 (12)

We use Inequality (12) to provide an upper bound to the expression

|𝑞𝑧 − 𝜌𝑧
𝐽
|, using case-by-case analysis.

Case 1: Assume 𝑞𝑧 < 𝜌𝑧
𝐽
. This leaves us with three possibilities for

the value of 𝜃 𝐽 ′ :

(1) Assume 𝜃 𝐽 ′ ≥ 𝜌𝑧
𝐽
. Then,

𝜌𝑧
𝐽
− 𝑞𝑧 ≤ 𝜃 𝐽 ′ − 𝑞𝑧 ≤ 𝜖/2 (13)

(2) Assume 𝑞𝑧 ≤ 𝜃 𝐽 ′ < 𝜌𝑧
𝐽
. Now, we bound the desired quantity

using the value of 𝜌 𝐽 ′ . Note that |𝑞𝑧 − 𝜌 𝐽 | ≤ |𝑞𝑧 − 𝜌 𝐽 ′ | since
𝐽 is the best classifier. Thus, either 𝜌 𝐽 ′ ≥ 𝜌 𝐽 or 𝜌 𝐽 ′ ≤ 𝑞𝑧 .

(a) Assume 𝜌 𝐽 ′ ≤ 𝑞𝑧 . Then,

|𝑞𝑧 − 𝜌𝑧
𝐽
| ≤ 𝑞𝑧 − 𝜌𝑧

𝐽 ′ ≤ 𝜃 𝐽 ′ − 𝜌𝑧𝐽 ′ ≤ 𝛿2 (14)

(b) Assume 𝜌 𝐽 ′ ≥ 𝜌 𝐽 . Then,

|𝑞𝑧 − 𝜌𝑧
𝐽
| ≤ (𝜌𝑧

𝐽 ′ − 𝑞
𝑧)

= (𝜌𝑧
𝐽 ′ − 𝜃 𝐽 ′) + (𝜃 𝐽 ′ − 𝑞

𝑧)
≤ 𝛿2 + 𝜖/2 (15)

(3) Assume 𝜃 𝐽 ′ < 𝑞𝑧 . Now, we bound the desired quantity using

the value of 𝜌 𝐽 ′ , and there can be three cases.

(a) Assume 𝜌 𝐽 ′ ≤ 𝜃 𝐽 ′ . Then,

|𝑞𝑧 − 𝜌𝑧
𝐽
| ≤ 𝑞𝑧 − 𝜌𝑧

𝐽 ′

≤ (𝑞𝑧 − 𝜃 𝐽 ′) + (𝜃 𝐽 ′ − 𝜌𝑧𝐽 ′)
≤ 𝜖/2 + 𝛿2 (16)

(b) Assume 𝜃 𝐽 ′ < 𝜌 𝐽 ′ ≤ 𝑞𝑧 . Then,

|𝑞𝑧 − 𝜌𝑧
𝐽
| ≤ 𝑞𝑧 − 𝜌𝑧

𝐽 ′ ≤ 𝑞𝑧 − 𝜃 𝐽 ′ ≤ 𝜖/2 (17)

(c) Assume 𝜌 𝐽 ′ > 𝜌 𝐽 . Then,

|𝑞𝑧 − 𝜌𝑧
𝐽
| ≤ 𝜌𝑧

𝐽 ′ − 𝜃 𝐽 ′ ≤ 𝛿2 (18)



Inequalities (13)-(18) establish the following upper bound when

𝑞𝑧 < 𝜌𝑧
𝐽
,

|𝑞𝑧 − 𝜌𝑧
𝐽
| ≤ 𝛿2 + 𝜖/2. (19)

Case 2: 𝑞𝑧 ≥ 𝜌𝑧
𝐽
. An analysis analogous to Case 1 gives the same

inequality as (19). Combining Inequalities (11) and (19), we obtain

the desired upper bound of 𝛿1+𝛿2+𝜖/2 on the quantity |𝜌𝑧−𝜌𝑧 |. □

5 EXPERIMENTAL EVALUATION
We first evaluate CAPE on synthetically generated datasets. We then

compare it with state-of-the-art fair classifiers on the real-world

COMPAS [40] and MEPS [1] datasets, where we observe possible

prior-probability shifts. The performance of CAPE on a wide range

of fairness-metrics, across all these datasets, enforces our proposal

that CAPE should be used for predictions under prior-probability

shifts.

5.1 Datasets
Synthetic: We assume a generative model with 3 features—a sen-

sitive attribute 𝑍 ∈ {0, 1}, and two additional attributes 𝑈 and

𝑉—along with the label 𝑌 ∈ {0, 1}. We assume that the overall pop-

ulation distribution is generated as P(𝑈 ,𝑉 , 𝑍,𝑌 ) = P(𝑈 ,𝑉 |𝑍,𝑌 ) ·
P(𝑍 |𝑌 ) · P(𝑌 ). We further consider equal representation of the

two population subgroups,P(𝑍 = 1|𝑌 ) = P(𝑍 = 0|𝑌 ) for each 𝑌 ∈
{0, 1}. Also,𝑈 and 𝑉 are conditionally independent:

P(𝑈 ,𝑉 |𝑍,𝑌 ) = P(𝑈 ,𝑉 |𝑌 ) = P(𝑈 |𝑌 ) · P(𝑉 |𝑌 ).

The underlying distributions are considered to be Gaussian (N )

with the following mean and standard deviation:

• P(𝑈 |𝑌=1) ∼ N (15, 10)
• P(𝑈 |𝑌=0) ∼ N (5, 5)
• P(𝑉 |𝑌=1) ∼ N (20, 10)
• P(𝑉 |𝑌=0) ∼ N (40, 10)

We generated 50000 instances for the training dataset 𝐷 with

equal label distribution, i.e., 𝜌𝑧
𝐷

= 0.5. Also, we created multiple

test datasets, each with a different value of true prevalence 𝜌𝑧
D
.

We generated 81 different types of test datasets, each obtained by

varying the prevalences for both subgroups 𝑧 ∈ {0, 1}, such that

𝜌𝑧
D
∈ {0.1, . . . , 0.9}.

COMPAS dataset contains demographic information and criminal

history for pre-trial defendants in Broward County, Florida. The

dataset also contains a binary label is_recid that indicates whether
a defendant re-offended within two years from the date of screening.

The goal of learning is to predict whether an individual re-offends.

We consider is_recid as 𝑌 labels (𝑌=1 denotes individuals who

re-offended while 𝑌=0 denotes individuals who did not re-offend)

and race as the sensitive attribute (𝑍=1 denotes African-Americans,

while 𝑍=0 denotes Caucasians). We pre-processed the dataset to re-

move rows containing missing or invalid information. Our training

dataset comprises 4278 records whose screening dates were in the

year 2013 (of which 59.70% are African-Americans), while the test

dataset comprises 1809 records screened in the year 2014 (of which

60.86% are African-Americans).

MEPS comprises medical expenditure surveys carried out on indi-

viduals, health care professions, and employers in the United States.

A feature UTILIZATIONmeasures the total number of trips involved

in availing some sort of medical facility. The classification task in-

volves predicting whether a person would have “high" utilization

(defined as UTILIZATION ≥ 10, where 10 is roughly the average uti-

lization among the respondents). Thus, we consider UTILIZATION
as 𝑌 labels. The sensitive attribute, RACE is constructed as follows:

‘Whites’ (Z=0) is defined by the features RACEV2X = 1 (White) and

HISPANX = 2 (non Hispanic); everyone else is tagged ‘Non-Whites’

(Z=1). The surveys for the year 2015 is our training set (with 33400

data points, of which 62.86% are ‘Non-Whites’), and the surveys

for 2016 is our test set (with 32006 data points, of which 61.72% are

‘Non-Whites’).

5.2 Other Algorithms for Comparison
We compare CAPE against an accuracy-maximizing classifier, Max_
Acc, which is the same algorithm employed in the C-ALG module

of CAPE. On the real-world datasets, we additionally compare CAPE
with the following fair algorithms, implemented in the IBM AI

Fairness 360 [7] toolkit: —Reweighing (Reweigh) [29], variants of
Meta_fair [11], Adversarial Debiasing (AD) [51], Calibrated Equal-

ized Odds Postprocessing (CEOP) [39], Reject Option Classification

(ROC) [30]. None of these algorithms are designed to handle PE-
fairness. We evaluate the extent to which these algorithms achieve

PE-fairness and compare how they perform on a set of other metrics

(such as FPR-difference, FNR-difference, Accuracy-difference, and

PD). While CAPE can handle multiple sensitive attributes, we choose

one sensitive attribute for all the datasets to stay consistent with the

implementation in the IBM AIF360 toolkit. We ran experiments on

a machine with 32 GB RAM and a quad-core Intel Core i7 processor.

5.3 Parameters and Modules used for CAPE
• Prevalences: We set Θ = {0.05, 0.15, . . . , 0.95}.
• PP-SAMPLING: As described in Section 4, this module takes as

input a prevalence parameter 𝜃 ∈ Θ and a training dataset with

𝑁𝑧 data points. It randomly selects, with replacement, 𝜃 × 𝑁𝑧

instances with 𝑌=1 and (1 − 𝜃 ) × 𝑁𝑧 instances with 𝑌=0. Thus,

it outputs a sample of size 𝑁𝑧 .

• Q-ALG: Scaled Probability Average [6].
• C-ALG: As the synthetically generated datasets are created using

simple generative models, we use generalized logistic regression

(glm) with regularization. For COMPAS and MEPS, we use gra-

dient boosted algorithm (gbm) and 10-fold cross-validation for

hyper-parameter tuning.

5.4 Results
Synthetic dataset:We evaluated CAPEwith 81 types of test datasets,
each type with a different prediction prevalence 𝜌𝑧

D
∈ {0.1, . . . , 0.9}

for each subgroup 𝑧 ∈ {0, 1}. The general trend we observe is that

CAPE outperforms Max_Acc whenever there is a significant shift in

prior probabilities. We report three interesting sets of results here.

First, we consider test datasets with 𝜌0
D
= 0.5, and 𝜌1

D
ranging

between 0.1 and 0.9. Since CAPE accounts for prevalence changes, its
accuracy onD for group 𝑍=1 (Figure 3a) is consistently higher than



(a) Accuracy of 𝑍 = 1. (b) Prevalence Difference for 𝑍 = 1. (c) PE for group 𝑍=1 with respect to 𝑍=0.

Figure 3: Comparing accuracy and PD and PE on synthetic datasets with varying prevalences for group 𝑍=1. The prevalence for
group 𝑍=0 is fixed at 0.5. The results are averaged over 20 iterations and the standard deviation is of the order 10−3.

Accuracy ∆ PE1,0 PE0,1

Z 𝜌𝑧
D

CAPE Max_Acc CAPE Max_Acc CAPE Max_Acc CAPE Max_Acc

0 0.1 0.940 0.880 0.009 0.094

0.060 0.094 0.057 0.104

1 0.1 0.930 0.855 0.016 0.110

0 0.2 0.894 0.855 0.017 0.084

0.199 1.432 0.012 0.142

1 0.8 0.909 0.877 0.006 0.074

0 0.9 0.929 0.851 0.012 0.120

0.003 0.029 0.003 0.028

1 0.9 0.940 0.879 0.006 0.097

Table 1: Accuracy, PD and PEmetrics on synthetic datasets when test dataset D is such that 𝜌𝑧
D
≠ 0.5, for each 𝑧 ∈ {0, 1}.

Max_Acc, except for the dataset with 𝜌1
D
= 0.5 where the accuracies

become nearly equal.

The prevalence difference (Figure 3b) is lower for CAPEwhenever
there is a prior probability shift (i.e., when 𝜌1

D
≠ 0.5). In fact, for

Max_Acc, 𝜌1
D
remains around 0.5 across all the test datasets. Thus,

Δ1

D
for Max_Acc degrades linearly with increasing shift of 𝜌1

D
from

the value 0.5.

Figure 3c shows the comparison of CAPE and Max_Acc in terms of

fairness. Recall that a lower value of PE implies a greater degree of

fairness. We observe that the PE value (of group 𝑍 = 1 with respect

to group 𝑍 = 0) for Max_Acc increases when the true prevalence

𝜌1
D
deviates from 0.5. However, for CAPE, the PE value remains

consistently low, across the different types of test datasets. This

highlights that CAPE is better able to handle the prior-probability
shifts between the training and test datasets. Moreover, note the

similarity between Figure 3b and Figure 3c, which demonstrates

that a high value of PD for group 𝑍 = 1 correlates with a high

value for the PE metric for the same group. This highlights that the

predictions of CAPE are more fair, compared to the purely accuracy

maximizing Max_Acc.
In Table 1, we report results for scenarios where both 𝜌0

D
and 𝜌1

D
significantly deviate from their corresponding prevalences in the

training set. The results are representative of the general trend we

observed in the other test datasets—CAPE outperforms Max_Acc on

the accuracy, PD, and PE metrics.

Real-world datasets: For COMPAS, columns 3 and 4 of Table 2

highlight that the true prevalences of the training (screened in the

year 2013) and test (screened in the year 2014) datasets are signif-

icantly different. This is indicative of a possible prior probability

shift. Column 5 shows that the Q-ALGmodule of CAPEmakes a good

estimate of the true prevalences of the test dataset. On the other

hand, for MEPS, we observe a shift only for the group 𝑍=1, between

the training set (surveys in the year 2015) and test set (surveys in the

year 2016). Since the differences in prevalences are rather small, this

dataset is of interest—it allows us to investigate the performance

of CAPE when the extent of prior probability shift is small. Though

the prevalences estimated by Q-ALG seem similar to the training set,

the difference in the estimates of Q-ALG and the prevalences of the

test datasets are only 0.02 and 0.006, for 𝑍=0 and 𝑍=1 respectively,

and are thus good estimates.

Table 3 summarizes the results on COMPAS and MEPS datasets

for CAPE, Max_Acc, and the other fair algorithms described in Sec-

tion 5.2. We consider two versions of our algorithm—CAPE-D and

CAPE-1. The version CAPE-D considers the whole test dataset D dur-

ing prediction, while CAPE-1 considers individual instances during
prediction (similar to what the other algorithms do). We expect

CAPE-D to perform better than CAPE-1 since the Q-ALG module is

expected to perform better for larger test datasets.

Results on COMPAS dataset: CAPE-D outperforms Max_Acc on PD
metric (Δ), and all the other fairness metrics (FPR-diff, FNR-diff,

Accuracy-diff, and PE). The prediction prevalences of Max_Acc



Z

Training Data
True Prevalence

𝜌𝑧
𝐷

Test Data
True Prevalence

𝜌𝑧
D

Quantifier’s
Estimate
𝑞 (D𝑧 )

COMPAS 0 0.327 0.636 0.592

1 0.486 0.706 0.644

MEPS 0 0.253 0.253 0.273

1 0.124 0.117 0.123

Table 2: The table shows prevalences and quantifier’s esti-
mates for COMPAS andMEPS datasets. Column 3 and 4 show
prior probability shifts. Column 5 highlights the prevalence
estimates obtained by Q-ALGmodule of CAPE algorithmon the
test datasets.

(0.284 and 0.542) are close to the true prevalences of the train-
ing set (0.327 and 0.486), which highlights the inability of Max_Acc
to account for the prior probability shift. One critical observation

about CAPE-D is that FPR-diff=0.081 and FNR-diff=0.027 (both being

low values), which implies that the predictions exhibit equalized

odds. In comparison, these differences for Max_Acc are 0.127 and
0.289 (higher than CAPE-D). In fact, for Max_Acc, FPR𝑍=1 is almost

twice than FPR𝑍=0, whereas FNR𝑍=1 is almost half of FNR𝑍=0. This

implies that Max_Acc imposes unfair higher risks of recidivism on

African-American defendants, while Caucasian defendants are pre-

dicted to have lower risks than they actually do.

We observe that Δ0
is the lowest for CAPE-D among all other

classifiers. For 𝑍 = 1, Meta_fair-fdr is the only other fair classifier

with a lower Δ1
value compared to CAPE. However, the predictions

of Meta_fair-fdr have high false positive rates, and low accuracies.

Note that a trivial classifier, which always predicts positive labels,

will have FNR-diff=0, FPR-diff=0, Accuracy-diff=0.07. However, this

classifier will have high PD for both groups (Δ0
=0.364 andΔ1

=0.294),

which indicates a substantial skew between the false positives and

false negatives. Thus, PD is an important metric that, in addition to

accuracy, captures the learning ability of the classifiers.

Moreover, the PE1,0 and PE0,1 values are lowest for both ver-

sions of CAPE, which reinforces our hypothesis that predictions of

CAPE are highly PE-fair in the presence of a high degree of prior-

probability shift.

Results on MEPS dataset: Though FPR-diff and FNR-diff are lower

for Max_Acc compared to CAPE-D, the actual FNR values are much

higher than CAPE-D for both subgroups. The overall accuracy of

CAPE-D is 84.9% which is slightly better than that of Max_Acc
(84.3%). The accuracy for both CAPE-D and CEOP(‘fpr’) are equal
for 𝑍 = 1. However, CEOP(‘fpr’) trivially classifies everyone in the

group 𝑍 = 1 as being in the negative class, i.e.
ˆℎ(𝑋 ) = 0, and this

issue is flagged by the corresponding Δ1
value (which is 39 times

higher than that of CAPE-D) and PE1,0 (which is 69.7 times higher

than CAPE-D). Both CEOP(‘fnr’ and ‘weighted’) have the highest

accuracy for 𝑍 = 1. However, they perform poorly on FNR, PD, and
PE. Reweigh performs better than CAPE-D on FPR-diff, FNR-diff and

accuracy diff, but the PD values for Reweigh are 14.3 and 62.67 times

higher than CAPE-D for the groups 𝑍 = 0 and 𝑍 = 1 respectively.

Since the extent of the prior-probability shift is low for MEPS, the

other fair algorithms are expected to perform well on the fairness

metrics. We observe that both versions of CAPE perform better

than other algorithms in terms of the PE and PD metrics. Thus, the

predictions of CAPE are the most PE-fair, even when the degree of

prior-probability shift is low. We make a final observation on our

experimental results. Since both COMPAS and MEPS are real-world

datasets, the distributional changes highlighted in Table 2 may not

be due to prior probability shifts alone. Although CAPE is designed

to handle only prior probability shifts, the good performance of both

CAPE-D and CAPE-1 on a wide range of metrics for these real-world

datasets shows the robustness of our approach.

6 CONCLUSION AND DISCUSSION
We addressed the problem of fair classification in the presence of

prior probability shifts. We provided a framework, called CAPE, that
combines sampling, ensemble and quantification techniques to pro-

vide fair predictions. Although several ensemble methods [38] have

been proposed in the literature, they cannot be directly used for the

problem we consider. We also introduced a metric called prevalence
difference (PD), and theoretically established its compatibility with

accuracy. We used the PD metric as a key component within CAPE,
and established that CAPE can be used to ensure a low value of PD
in the predictions.

Through extensive experimental evaluation we observed that

CAPE performs well on both fairness and accuracy metrics. On syn-

thetic datasets, we observed that the accuracy, PE, and PD metrics

of Max_Acc (a classifier that maximizes accuracy on the training

dataset) degrade with increasing dataset shifts. However, the per-

formance of CAPE remained consistently better than Max_Acc under
various extents of dataset shifts. On real-world datasets, we com-

pared CAPE with state-of-the-art fair algorithms and observed that

CAPE performed well with respect to PE fairness, as well as other
well-studied fairness metrics.

CAPE has many advantages, as highlighted in the earlier sections

of this paper. However, it is not the ultimate solution for all fairness

issues. We now discuss some limitations. CAPE assumes that 𝑌

labels in the dataset are the ground-truth (eg, whether a defendant

re-offends). This assumption may not be true in some datasets

where the labels are human decisions (eg, jury deciding whether a

defendant will re-offend). Another problem is that our techniques

rely on the value of the sensitive attributes of each instance. In

situations where the sensitive attribute values are unavailable or

prohibited from being used, our techniques do not apply.

An obvious variant of CAPE is to use only a quantifier (but no

classifier) in the training phase. In the prediction phase, the quanti-

fier is then used to estimate the prevalence of a test dataset D. This
estimate is fed to the PP-SAMPLING module to sample the training

set, which is then used to train a classifier and predict on D. The
obvious advantage is that we need to train one classifier instead
of |Θ| classifiers, for each 𝑧. The downside of this modification

is the need to persist the training data, and the prediction phase

becomes computationally expensive since a classifier needs to be

trained (from scratch) for every new test dataset. Moreover, such

a classifier rely entirely on the estimates given by the quantifier,

which varies a lot depending on the training set. We observed that



FPR FNR Accuracy
Prediction
Prevalences ∆

Algorithms Z = 0 Z = 1 diff Z = 0 Z = 1 diff Z = 0 Z = 1 diff Z = 0 Z = 1 Z = 0 Z = 1 PE1,0 PE0,1

C
O
M
PA

S

CA
PE CAPE-D 0.461 0.380 0.081 0.302 0.275 0.027 0.640 0.694 0.054 0.612 0.623 0.024 0.083 0.092 0.082

CAPE-1 0.271 0.290 0.019 0.451 0.322 0.129 0.614 0.687 0.073 0.448 0.564 0.188 0.142 0.149 0.106

Max_Acc 0.132 0.259 0.127 0.629 0.340 0.289 0.552 0.684 0.132 0.284 0.542 0.352 0.163 0.799 0.376

Pr
e Reweigh 0.283 0.139 0.144 0.493 0.543 0.050 0.583 0.576 0.007 0.425 0.363 0.211 0.343 0.257 0.271

In

Meta-fair-sr 0.977 0.849 0.128 0.102 0.492 0.390 0.579 0.403 0.176 0.927 0.609 0.291 0.097 0.454 0.623

Meta-fair-fdr 0.965 0.901 0.064 0.162 0.356 0.194 0.545 0.483 0.062 0.884 0.719 0.248 0.013 0.298 0.329

AD 0.124 0.167 0.043 0.638 0.467 0.171 0.549 0.621 0.072 0.275 0.425 0.361 0.281 0.432 0.252

Po
st

CEOP-fpr 0.066 1.000 0.934 0.722 0.000 0.722 0.517 0.706 0.189 0.201 1.000 0.435 0.294 3.875 0.699

CEOP-fnr 0.000 0.247 0.247 1.000 0.390 0.610 0.364 0.652 0.288 0.000 0.503 0.636 0.203 undef 0.900

CEOP-weighted 0.000 0.194 0.194 1.000 0.405 0.495 0.364 0.657 0.292 0.000 0.477 0.636 0.229 undef 0.900

ROC-aod 0.004 0.019 0.015 0.978 0.900 0.078 0.377 0.360 0.017 0.016 0.076 0.620 0.630 3.799 0.696

ROC-eod 0.019 0.046 0.027 0.911 0.782 0.129 0.414 0.434 0.020 0.064 0.167 0.572 0.539 1.518 0.520

M
EP

S

CA
PE CAPE-D 0.131 0.068 0.063 0.425 0.488 0.063 0.794 0.883 0.089 0.243 0.120 0.010 0.003 0.031 0.135

CAPE-1 0.175 0.087 0.088 0.347 0.423 0.076 0.781 0.874 0.093 0.296 0.144 0.043 0.027 0.024 0.107

Max_Acc 0.004 0.012 0.008 0.910 0.888 0.022 0.766 0.890 0.124 0.037 0.014 0.216 0.103 0.085 0.483

Pr
e Reweigh 0.276 0.242 0.034 0.250 0.226 0.024 0.731 0.760 0.029 0.396 0.305 0.143 0.188 0.307 0.862

In

Meta-fair-sr 0.322 0.213 0.109 0.210 0.243 0.033 0.706 0.783 0.077 0.440 0.277 0.187 0.160 0.167 0.572

Meta-fair-fdr 0.347 0.254 0.102 0.193 0.218 0.025 0.692 0.758 0.066 0.463 0.308 0.210 0.191 0.202 0.657

AD 0.062 0.051 0.011 0.644 0.569 0.075 0.791 0.889 0.098 0.136 0.095 0.117 0.022 0.236 0.728

Po
st

CEOP-fpr 0.078 0.000 0.078 0.573 1.000 0.427 0.797 0.883 0.086 0.166 0.000 0.087 0.117 2.160 undef
CEOP-fnr 0.034 0.022 0.012 0.803 0.704 0.102 0.771 0.899 0.128 0.075 0.054 0.178 0.063 0.257 0.771

CEOP-weighted 0.032 0.021 0.011 0.816 0.704 0.112 0.770 0.899 0.129 0.070 0.053 0.183 0.064 0.294 0.839

ROC-aod 0.329 0.253 0.076 0.205 0.210 0.005 0.702 0.752 0.050 0.447 0.216 0.194 0.199 0.244 0.745

ROC-eod 0.336 0.233 0.103 0.194 0.227 0.033 0.700 0.768 0.068 0.455 0.296 0.202 0.179 0.188 0.623

Table 3: Comparing CAPE with Max_Acc and other fair classifiers on the test-set of the real-world datasets, COMPAS and MEPS.

such a classifier performs poorly in terms of accuracy, PE, and PD. It
may be worthwhile to investigate the trade-offs of CAPE with other

similar modifications.

While our technique addresses prior probability shifts between

the training and test datasets, it may not be applicable under concept
drifts [35, 45], i.e. when P(𝑋 |𝑌, 𝑍 ) changes. Exploring possible im-

provements for CAPE to handle more general distributional changes

remains open.
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