
Efficient Static Analyses for Concurrent Programs

A THESIS

SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

IN THE

Faculty of Engineering

BY

Suvam Mukherjee

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

December, 2017

Declaration of Originality

I, Suvam Mukherjee, with SR No. 04-04-00-17-12-11-1-08865 hereby declare that the

material presented in the thesis titled

Efficient Static Analyses for Concurrent Programs

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2011-2017.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Suvam Mukherjee

December, 2017

All rights reserved

DEDICATED TO

My Parents, my brother Sourav, my sister-in-law Deboeeta, my

niece Aheer, and Arpita.

Thank you for everything.

6

Acknowledgements

This thesis would not have seen the light of day without the continuous support, love and

encouragement of a large number of people.

I would like to thank my advisor, Prof. Deepak D’Souza, for all his care, help and encour-

agement. His classes were my first brush with the fascinating field of Program Analysis, and

I have been intrigued ever since. I have learnt a lot from him over the course of my Ph.D.–

his drive to push yourself that extra bit in order to make a good work great, his penchant for

ensuring that my research was mathematically rigorous and elegant, and his intuitive explana-

tions (specially his diagrams, which I hope I learnt well!) of even the most difficult concepts.

Above all, I admire most his understanding and sympathetic nature. Thank you, Sir.

I would like to thank Prof. Raghavan, Prof. Kanade and Prof. D’Souza for offering

excellent courses in the area of Program Analysis and Verification. I owe all my knowledge

and understanding of these areas to their exposition and insights. I thank Prof. Raghavan and

Prof. D’Souza for providing the excellent laboratory facilities.

I would like to thank Prof. Narahari, Chairman of the Division of Electrical Sciences, IISc.

You have been a source of inspiration for me right from the day of my interviews. I would like

to thank you for the innumerable things you have unfailingly helped me out with.

I am thankful to Prof. Helmut Seidl and Prof. Mooly Sagiv, for providing me with won-

derful internship opportunities in Germany and Israel, respectively. I would like to take this

opportunity to thank Oded Padon, Prof. Sharon Shoham and Prof. Noam Rinetzky for all the

intellectually stimulating discussions. Mooly, Oded, Sharon and Noam- thank you so much for

all your support.

The CSA department is a wonderful place to do research, and I would like thank the Faculty

of CSA for making this possible. Thanks to all the staff in the CSA office- Ms. Kushael, Ms.

Meenakshi, Ms. Padmavathi, Ms. Nishita and Ms. Suguna, who helped me sort out various

administrative issues. Many thanks to the security personnel for ensuring safety at all times.

Special thanks to Sudesh Bhaiya (whose encyclopedic knowledge makes him akin to CSA Wiki)

i

Acknowledgements

for all your encouragement and support, right from Day 1.

During the course of my PhD at IISc, I made the most wonderful friends possible. Thanks

to Anirban, Narendran, Remish, Indradeep, Chandrahas, Aastha, Saneem, Ninad, Sandeep,

Manjunath, Biswaroop, Karthik, Aniket, Dilesh, Abhiruk, Sayantan and Indranil. You really

were there through all my ups and downs, and I cannot thank you enough.

Thanks to all members of the Programming Languages Lab, past and present: Raveendra,

Girish, Snigdha, Inzemam, Himanshu, Tejas, Vasanta, Aravind, Amogh, Raghavendra, Parixit,

Suvitha, and Pallavi, for making the lab a wonderful place to be in.

I would like to thank my Father, for his love, infectious enthusiasm, support and continuous

encouragement. Many thanks to my brother Sourav, for everything that you have taught me and

all your advice. Thanks to my sister-in-law Deboeeta, for all your love, support and guidance.

Though she may not understand this yet, many thanks to my little niece Aheer. You helped

me a lot with my research, though you conversed in your incomprehensible, monosyllabic, yet

beautiful, sounds. My thanks to revered Sudarshan Maharaj and my grandparents, for their

love and blessings.

Finally, I would like to thank two very important people in my life. Ma– I cannot thank

you enough for everything you have done for me. This thesis is a result of all your years of

love, support, sacrifices, and selfless dedication to my well-being. Thank you, Ma. The other

person is Arpita– thank you for your love, sacrifices, friendship and guidance. I simply could

not have done this without you. You are amazing, and you make my life tick.

ii

Abstract

Concurrent programs are pervasive owing to the increasing adoption of multi-core systems

across the entire computing spectrum. However, the large set of possible program behaviors

make it difficult to write correct and efficient concurrent programs. This also makes the formal

and automated analysis of such programs a hard problem. Thus, concurrent programs provide

fertile grounds for a large class of insidious defects. Static analysis techniques infer semantic

properties of programs without executing them. They are attractive because they are sound

(they can guarantee the absence of bugs), can execute with a fair degree of automation, and do

not depend on test cases. However, current static analyses techniques for concurrent programs

are either precise and prohibitively slow, or fast but imprecise. In this thesis, we partially

address this problem by designing efficient static analyses for concurrent programs.

In the first part of the thesis, we provide a framework for designing and proving the correct-

ness of data flow analysis for race free multi-threaded programs. The resulting analyses are in

the same spirit as the “sync-CFG” analysis, originally proposed in De et al [22]. Using novel

thread-local semantics as starting points, we devise abstract analyses which treat a concurrent

program as if it were sequential. We instantiate these abstractions to devise efficient relational

analyses for race free programs, which we have implemented in a prototype tool called RAT-

COP. On the benchmarks, RATCOP was fairly precise and fast. In a comparative study with

a recent concurrent static analyzer, RATCOP was up to 5 orders of magnitude faster.

In the second part of the thesis, we propose a technique for detecting all high-level data

races in a system library, like the kernel API of a real-time operating system (RTOS) that relies

on flag-based scheduling and synchronization. Such races are good indicators of atomicity

violations. Using our technique, a user is able to soundly disregard 99.8% of an estimated

41, 000 potential high-level races. Our tool detected 38 high-level data races in FreeRTOS (a

popular OS in the embedded systems domain), out of which 16 were harmful.

iii

Abstract

iv

Publications based on this Thesis

• Suvam Mukherjee, Oded Padon, Sharon Shoham, Deepak D’Souza, and Noam Rinetzky.

”RATCOP: Relational Analysis Tool for Concurrent Programs.” In Haifa Verification

Conference (HVC 2017), pp. 229-233. Springer, Cham, 2017.

• Suvam Mukherjee, Oded Padon, Sharon Shoham, Deepak D’Souza, and Noam Rinetzky.

”Thread-local semantics and its efficient sequential abstractions for race-free programs.”

In Static Analysis Symposium (SAS 2017), pp. 253-276. Springer, Cham, 2017.

• Suvam Mukherjee, Arun Kumar, Deepak D’Souza. ”Detecting All High-Level Dataraces

in an RTOS Kernel”. In: Bouajjani A., Monniaux D. (eds) Verification, Model Checking,

and Abstract Interpretation (VMCAI 2017). Lecture Notes in Computer Science, vol

10145. Springer.

v

Publications based on this Thesis

vi

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis v

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 A Thread-Local Semantics, and its efficient Sequential Abstractions for Race

Free Programs . 4

1.1.1 Illustrative Example . 7

1.2 Detecting all High-Level Data Races in an RTOS Kernel 11

1.2.1 Overview of our Approach . 12

1.3 Structure of this Thesis . 14

I Thread-Local Semantics, and its Efficient Abstractions, for Race
Free Programs 17

2 Concurrent Programs and their Interleaving Semantics 19

2.1 Mathematical Notations . 19

2.1.1 Programming Language and Programs 20

2.2 Interleaving Semantics . 23

vii

CONTENTS

2.3 Data Races and the Happens-Before Relation 26

3 The Thread-Local Semantics L-DRF 29

3.1 Overview . 29

3.2 The thread-local L-DRF semantics . 30

3.3 Soundness and Completeness of L-DRF . 35

4 Sequential Abstractions of the L-DRF semantics 49

4.1 Theory of Consistent Abstractions . 50

4.2 A-DRF : A Canonical sync-CFG Analysis based on L-DRF 51

4.2.1 Thread-Local Cartesian Abstract Domain 51

4.2.2 Abstract Transitions . 52

4.3 The LFP solution of A-DRF . 54

4.4 Soundness of the Sequential Abstractions . 55

4.5 Other abstractions of L-DRF . 58

5 A Region-Parameterized version of L-DRF 61

5.1 Why do we need another semantics? . 61

5.2 Region Race Freedom . 62

5.3 The R-DRF semantics . 63

5.3.1 Thread-Local Abstractions of the R-DRF Semantics 63

5.4 Illustrative Example . 63

6 Implementation and Experiments 65

6.1 RATCOP: Relational Analysis Tool for COncurrent Programs 65

6.2 Evaluation . 67

6.2.1 Porting Sequential Analyses to Concurrent Analyses. 67

6.2.2 Precision and Efficiency. 67

6.3 Comparing with a current abstract interpretation based tool. 68

7 Related Work and Discussion 71

II Detecting all High-Level Data Races in an RTOS Kernel 75

8 The architecture of FreeRTOS 77

8.1 Overview of FreeRTOS . 77

viii

CONTENTS

9 Atomicity Violations, and High-Level Data Races 83

9.1 (S,C) Races . 83

9.2 Examples of (S,C) races in FreeRTOS . 85

10 Modelling FreeRTOS in Spin 89

10.1 Modeling Mn . 89

10.2 Strategy to identify all high-level races . 93

11 Reduction to Mred 97

12 Experimental Evaluation 105

12.1 Experimental Setup . 105

12.2 Evaluating M2 . 106

12.3 Evaluating Mred . 106

12.3.1 List of Detected Races . 108

13 Related Work and Discussion 111

14 Concluding Remarks 115

Bibliography 117

ix

CONTENTS

x

List of Figures

1.1 A simple race free multi-threaded program. The variables x, y and z are shared

and initialized to 0. 7

1.2 A simple race free program with two threads t1 and t2, with all variables being shared

and initialized to 0. The columns L-DRF and R-DRF show the facts computed by

polyhedral abstractions of our thread-local semantics and its region-parameterized

version, respectively. The Value-Set column shows the facts computed by interval

abstractions of the Value-Set analysis of [22]. R-DRF is able to prove all 3 assertions,

while L-DRF fails to prove the assertion at line 11. Value-Set only manages to prove

the simple assertion at line 9. 8

1.3 The sync-CFG representation of the program in Figure 1.2 is presented on the

left. On the right is an excerpt of the standard product graph representation of

the same program. In a sequential setting, a control flow graph is a standard

way to represent programs, where each node denotes a control location, and

edges represent flow of control. Each node in the product graph represents a

combination of possible program locations across threads, and an edge between

two such nodes represents an interleaving step. Any abstract analysis running on

the product graph will clearly not scale for large programs. The sync-CFG, on

the other hand, is a more sparse representation, resulting in improved scalability. 9

1.4 A simple program demonstrating an atomicity violation. The variable x is global.

The program is free from data races. Since it is initialized to 0, and the threads

perform 2 increments to it, the expectation of a developer would be that x = 2

when the threads finish. However, x can, in fact, be 1 at line 6. 12

2.1 Semantic Domains. 20

xi

LIST OF FIGURES

2.2 Simulating the forking of a thread using acquire and release instructions. For

each thread, we assume we have a unique “thread lock” associated with it (in

fact, each thread object in Java does have an unique associated monitor). We

can assume that the main thread initially holds all the thread locks. In the

example above, the unique lock associated with T1 is called l T1. The left side

of the code shows the actual code with fork, while the one on the right is an

equivalent code using commands from cmd . The fork of T1 is substituted with

the release(l T1), while the begin in T1 is substituted with acquire(l T1). In

other words, the first command T1 tries to execute is the acquisition of the lock

l T1, and T1 can only proceed if the lock acquisition succeeds. 21

2.3 The example program from Figure 1.2. 22

2.4 A typical execution of the program in Fig. 1.1 with two threads, in accordance

to the standard interleaving semantics. The execution is an interleaving of in-

structions from the different threads, and is indicated by the solid arrows. The

dashed arrows indicate a couple of partial-orders induced by this execution: the

program-order (po), which relates successive instructions from the same thread,

and synchronizes-with (sw), which relates successive synchronization operations.

The reflexive and transitive closure of these partial orders forms the happens-

before (hb) relation, induced by this particular execution. The write of x at

location 2 in thread t1, and its subsequent read at location 11 in thread t2, can

be seen to be related by hb. 25

3.1 An execution of program Figure 1.2 with 2 threads. 33

3.2 Operation of the functions takex, takey, takez, and updEnv when t2 acquires m.

The superscripts indicate the versions. 34

3.3 A typical execution of a program P in the L-DRF semantics. The solid arrows

represent the interleaved execution of the instructions from different threads.

The dotted arrows denote the happens-before path induced by this execution.

The figure marks the sections of the happens-before path which are program-

order related (po), and the transitions related by synchronizes-with(sw). 37

3.4 The proof obligation for Soundness. For any n+ 1 length trace π of program P

in the standard semantics, we show that there exists a n + 1 length trace π̂ in

the L-DRF semantics, such that χ (π̂) = π. 42

xii

LIST OF FIGURES

3.5 The proof obligation for Completeness. For any n+ 1 length trace π̂ of program

P in the L-DRF semantics, we show that χ (π̂) is a valid a n+ 1 length trace of

P in the standard semantics. 46

4.1 Illustrating the mix on a set of containing two environments φ1 and φ2. Observe

that the invariant x = y holds in the input environments. However, since this

mix operates at the granularity of single variables, the correlation is lost in the

output states. 53

4.2 The proof obligation for proving that the analysis F× is a consistent abstraction

of the L-DRF analysis F. 55

4.3 A simple program demonstrated the benefit of using thread-identifiers in the

abstract state. In the normal setting, the synchronizes-with edges creates a cycle

in the program, and it is not possible to derive an upper bound on the value of

x. However, if we track thread-identifiers in the state, thread t1 observes that

any state it receives from t2 is tagged with the {t1}, and thus t1 can safely

drop the data flow facts. 58

5.1 Illustrating the operation of mix when it is aware of regions. In this exam-

ple, with the regions being 〈{x, y}, {z}〉, the function maintains the correlation

between x and y in the output. 64

5.2 The improved precision of the region aware mix derived from the R-DRF se-

mantics allows it to prove the additional assertion at line 11 in Figure 1.2. . . . 64

6.1 Overview of RATCOP. 66

6.2 Running times, on a log scale, of RATCOP (A3) and Batman (Bm-oct) on

loosely coupled threads. The number of shared variables is fixed at 6. 69

7.1 Example demonstrating that a program can be DRF, when when the accesses

of a global variable (in this case, the write and read of x at lines 11 and 12

respectively) are not directly guarded by any lock. 73

8.1 An example FreeRTOS application and its execution 78

8.2 Kernel data-structures in FreeRTOS. The data structures within the upper rect-

angle are protected by the SchedulerSuspended flag. RxLock and TxLock

protects the WaitingToSend and WaitingToReceive data structures, re-

spectively. 80

xiii

LIST OF FIGURES

8.3 Excerpts from FreeRTOS functions . 81

9.1 Extract from the QueueSend function in Figure 8.3. These instructions consti-

tute a critical write to the user-queue data structure. 84

9.2 The code on the left is a version of the QueueSend library function, with the

interrupts disabled at line 2. The code on the right is the example application

presented in Chapter 8. 86

9.3 Excerpt of the IncrementTick function outlined in Figure 8.3. 86

10.1 Model of the flow of control between the scheduler, a library function (task), and

an ISR in FreeRTOS. 90

10.2 Promela model of an interrupt. If the SchedulerSuspended flag is set, we

ensure that the control returns to the preempted task. Otherwise, after the

execution of the ISR, context may switch to an arbitrary ready task. 91

10.3 The abstraction of the QueueSend library function in the Promela modeling

language. For each shared data structure x we are interested in modeling, we

introduce an integer variable x. For example, we use queueData above as an

abstraction of the data component of a queue. Reads to x are modeled by an

increment of x by 1, followed by a decrement. Similarly, writes are modeled

by an increase of x by 2, followed by a decrease by 2. If, in addition, the

accesses are made in a non-atomic section of code, the increment and decrement

operations are interspersed by a call to the interrupt function, to model the

fact that an interrupt invocation may occur while x is being accessed. The Lock

and UnLock functions are described in Figure 10.4 and Figure 10.5 respectively. 92

10.4 The LockQueue function used in Figure 10.3. 93

10.5 The UnlockQueue function used in Figure 10.3. 93

10.6 Promela model Mn. 94

11.1 An example library where there is a potential data race between library functions

F and G. However, any execution which causes this data race also needs to execute

the library function H. Thus, a “reduction” to Mred does not suffice for this library. 97

11.2 The execution ρ and its reduction ρred . 99

12.1 Experimental Evaluation of Mred . 107

13.1 Applicability of earlier work to our setting. 113

xiv

List of Tables

2.1 Set of Program Commands, cmd . 20

6.1 Summary of the experiments. Superscript B indicates that the program has an actual

bug. (C) indicates the use of Convex Polyhedra as abstract data domain. “*” indicates

a program where we have altered/weakened the original assertion. The X column

indicates the number of assertions the tool was able to prove. 67

6.2 Running times of RATCOP (A3) and Batman (Bm-oct) on loosely coupled

threads. The number of shared variables is fixed at 6. 69

12.1 Some Sample Detected Races. “H” indicates Harmful races and “PB” indicates

Possibly Benign. 108

12.2 List of Harmful Races . 109

12.3 List of Potentially Benign Races . 110

xv

LIST OF TABLES

xvi

Chapter 1

Introduction

Concurrent programs are ubiquitous today across the entire computing spectrum: from soft-

ware running on low power micro-controllers, to programs running on powerful machines with

multiple processing cores. In recent years, the adoption of concurrent programs has acceler-

ated due to the proliferation of multi-core processors. Concurrency results in performance gains

thanks to the exploitation of potential parallelism in a system. Concurrent behaviors may occur

either due to the presence of “interrupts”, which causes a switch of context from the currently

executing task, or due to the explicit creation of threads which run in parallel. Unfortunately,

writing efficient and correct concurrent programs is a notoriously hard endeavor, owing to the

large number of possible behaviors due to the interactions between the concurrently executing

tasks or threads. Thus, concurrent programs provide fertile ground for a large class of insidious

defects: the bugs are difficult to detect, difficult to reproduce, and can, unpredictably, result

in catastrophic failures.

The large number of possible program behaviors makes automated reasoning about these

behaviors a very hard problem. This is also the reason why traditional testing techniques are of

little efficacy for uncovering bugs in concurrent programs. The problem is exacerbated by the

fact that finding an input which manifests a concurrency defect is not enough, because many

different schedules can result for the same input. Thus, reproducibility of a detected defect is

crucial for an algorithm to be useful.

While many formal and automated techniques have been proposed to argue about the

behaviors of concurrent programs, we look at three broad classes: systematic testing, dynamic

analyses, and static analyses.

The key to systematic concurrency testing techniques (SCT) [28, 37, 84] (synonymous to

stateless model checking) is the belief that most concurrency defects manifest with only a few

1

1. INTRODUCTION

number of context switches. The common idea in these approaches is to bound the concurrent

interleavings in some way (for example preemption bounding [61] or delay bounding [28]), and

then repeatedly executing the program while taking control of the scheduler, in order to ensure

that the same interleaving is not explored twice. [78] provides an excellent comparative study

of the various systematic concurrency testing techniques. Such techniques uncover real bugs

which are reproducible, and provide good coverage guarantees modulo the bound.

However, an SCT-based tool must have a scheduler that is aware of all possible sources

of non-determinism, since any such source is modeled as an invocation of this scheduler [47].

This makes SCT difficult to apply in many scenarios [78]. Moreover, as [78] highlights, some

concurrency bugs do not always cause a crash, and requires the additional non-trivial overhead

of the design of corresponding reliable and efficient checks.

In contrast to stateless model checking, [89, 80] provide techniques to model check concurrent

programs with explicit-state tracking. However, such techniques can be very resource intensive:

in Part II of this thesis, we discuss an explicit-state model checking based approach to finding

a class of concurrency defects (which we call “high-level data races”) in the kernel library

functions of FreeRTOS, a popular real-time operating system. Model checking is an exhaustive

check of a specific property on the entire state space of a system. Thus, for computability,

certain bounds are enforced (for example, in Chapter 12, we bound the maximum number

of concurrently running tasks or threads). In the case of FreeRTOS we discovered that for an

application with just 2 concurrently executing tasks, a sophisticated model checker [44] required

over 39GB of RAM, and ran for hours before timing out.

The other issue with both stateless and explicit-state model checking is their inherent in-

completeness: such techniques cannot prove the absence of bugs. In the case of model-checking,

it is often not possible to a priori provide a bound for the number of threads needed for a bug

to manifest. Thus, even though the check is exhaustive within the bound, it is incomplete in

general. In Chapter 11, we state and prove a meta claim which allowed us to use an existing

explicit-state model checker for our problem of detecting ”high-level data races” 1 in FreeRTOS,

and yet circumvent the issues of scalability and incompleteness. Using our technique, a user is

able to soundly disregard 99.8% of an estimated 41, 000 potential high-level races in FreeRTOS.

Our tool flagged 16 harmful races, and an additional 22 benign ones.

Dynamic analysis techniques take as input a concurrent program and a set of test inputs.

Typically, the compiled program is instrumented with additional instructions which record

1While we define this more precisely later on, intuitively, high-level data races are interleavings of regions of
code of concurrently executing processes. A high-level data race is a necessary condition for atomicity violations,
which is an important class of concurrency defects.

2

events of interest (for example, forking of threads, accesses to shared variables, and so forth).

Each execution of the program on a test input induces an “abstract trace”, which is a sequence

of such interesting events. The dynamic analyzer now performs reasoning over these abstract

traces. A rich set of dynamic analyzers exist [73, 27, 35, 67, 66, 52, 86, 34] targeting a variety

of concurrency defects like data races, deadlocks and atomicity violations. The bugs uncovered

by such techniques are true positives. However, dynamic analyses suffer from some drawbacks.

First, they are incomplete as well: dynamic analyses are unable to prove the absence of defects.

Second, there is the additional overhead of providing input test cases to the analyzer, and it

is non-trivial to devise good concurrent tests. There have been recent works [69, 68, 70, 71]

which address the problem of synthesizing tests for dynamic analyzers.

Static analysis techniques, as the name suggests, analyzes a program without executing it.

In this thesis, we consider static analyses based on the abstract interpretation [19] framework.

Static analyses are sound: they compute an over-approximation of all the possible concrete

states arising at every program point. Thus, a static analyzer can prove the absence of bugs.

However, the computation may generate false positives in the process– an analysis may be

unable to rule out a particular defect at a program point.

The first step in building such an analysis is to define a “most precise” concrete semantics,

which defines the precise set of behaviors of a given program. The concrete semantics is, in gen-

eral, incomputable. The abstract interpretation framework then suggests how to systematically

perform suitable abstractions of the concrete semantics to devise computable abstract analyses.

The steps here involve designing abstract states which correctly approximate a given set of

concrete states. The domain of abstract states and concrete states are related by a couple of

functions α and γ (α being the abstraction and γ being the concretization), which are together

said to form a “Galois connection”. Next, for each command in the programming language, one

needs to define a sound abstract transformer, which interprets each command over the abstract

states. The abstract analysis, which is a conglomeration of the abstract states (related via

α and γ with the concrete states) along with the abstract transformers, is then said to be a

consistent abstraction of the concrete analysis. An analysis which is a consistent abstraction

of the most precise concrete analysis provides the guarantee that the solution computed by it

satisfies the aforementioned notion of soundness.

Static analyzers have been successfully used to analyze and verify several large scale, and

some safety-critical, systems and a rich set of static analyzers are available today [21, 13, 53, 6,

79]. However, while the problem of devising efficient static analyses for sequential programs has

been well studied and is fairly well understood, doing the same for concurrent programs is still

3

1. INTRODUCTION

an active area of research. The main difficulty arises from the intrinsic need of a static analyzer

to capture all possible interferences between threads. In a typical multi-threaded program, the

set of possible interferences between threads may be large. Thus, a precise analysis does not

scale, while a fast analysis is quite imprecise [17].

In the first part of this thesis, we address the problem of devising efficient static analyses for

an important subclass of shared-variable multi-threaded programs, namely programs which are

data race free (DRF). Our starting point is a novel new thread-local concrete semantics for race

free multi-threaded programs, which we call the L-DRF semantics. We show that for programs

without races, the L-DRF semantics is equivalent to the standard concrete semantics. Using

the L-DRF semantics, one can devise efficient consistent abstractions, which are fairly precise,

and are in the same spirit as the “sync-CFG” analysis first proposed in [22]. These abstract

analyses satisfy a non-standard notion of soundness– the values computed for a variable are

sound only at points where they are relevant. The analyses thus trade soundness at all points

for gains in efficiency. The L-DRF semantics also aids in rapidly porting existing sequential

analyses to scalable analyses for DRF programs. Next, we parameterize the L-DRF semantics

with a partitioning of the program variables into “regions” which are accessed atomically.

Abstractions of the region-parameterized semantics yield more precise analyses for concurrent

programs which are “region race” free (a new notion that we introduce, which is a stronger

property than data race freedom). We instantiate these abstractions to devise efficient relational

analyses for race free programs, which we have implemented in a prototype tool called RATCOP.

On the benchmarks, RATCOP was able to prove up to 65% of the assertions, in comparison to

25% proved by a version of the analysis from [22].

In the following few sections, we introduce our contributions in more detail.

1.1 A Thread-Local Semantics, and its efficient Sequen-

tial Abstractions for Race Free Programs

Our aim in this part of the thesis is to provide a framework for developing data-flow analyses

which specifically target the class of data race free (DRF) concurrent programs. Informally, a

program is data race free if along every execution of it, all parallel accesses to a shared memory

location, with at least one access being a write, are separated by some form of synchronization.

Data races are the sources of many concurrency defects. All data races, “benign” or oth-

erwise, are considered to be errors [11, 2, 12, 5, 83]. DRF programs constitute an important

class of concurrent programs because they are guaranteed to have sequentially consistent (SC)

execution behaviors in many weak memory models [3, 56]. Non-DRF programs do not have

4

this guarantee, and program behaviors which do not conform to SC-semantics are often hard

to comprehend and reason about (leading to insidious defects). As such, programmers are

expected to write DRF programs [11].

The starting point of this work is the so-called “sync-CFG” style of analysis proposed in

[22] for race-free programs. The analysis here essentially runs a sequential analysis on each

thread, communicating data-flow facts between threads only via “synchronization edges” that

go from a release statement in one thread to a corresponding acquire statement in another

thread. The analysis thus runs on the control-flow graphs (CFGs) of the threads augmented

with synchronization edges, as shown in the center of Figure 1.2, which explains the name for

this style of analysis. The analysis computes data flow facts about the value of a variable that

are sound only at points where that variable is relevant, in that it is read or written to at

that point. The analysis thus trades unsoundness of facts at irrelevant points for the efficiency

gained by restricting interference between threads to the points of synchronization alone.

However, the analysis proposed in [22] suffers from some drawbacks. Firstly, the analysis is

intrinsically a “value-set” analysis, which can only keep track of the set of values each variable

can assume, and not the relationships among variables. Any naive attempt to extend the

analysis to a more precise relational one quickly leads to unsoundness. The second issue is

to do with the technique for establishing soundness. A convenient way to prove soundness

of an analysis is to show that it is a consistent abstraction [19] of a canonical analysis, like

the collecting semantics for sequential programs or the interleaving semantics for concurrent

programs. However, a sync-CFG style analysis cannot be shown to be a consistent abstraction

of the standard interleaving semantics, due largely to the unsoundness at irrelevant points.

Instead, one needs to use an intricate argument, as done in [22], which essentially shows that in

the least fixed point of the analysis, every write to a variable will flow to a read of that variable

via a happens-before path (that is guaranteed to exist by the property of race-freedom). Thus,

while one can argue soundness of an analysis that abstracts the value-set analysis by showing

it to be a consistent abstraction of the value set analysis, to argue soundness of any other

proposed sync-CFG style analysis (in particular one that is more precise than the value-set

analysis), one would have to resort to a similar involved proof as in [22].

Towards addressing these issues, we propose a framework that facilitates the design of

different sync-CFG analyses with varying degrees of precision and efficiency. The foundation

of this framework is a thread-local semantics for DRF programs, that can play the role of a

“most precise” analysis, and which other sync-CFG analyses can be shown to be consistent

abstractions of. This semantics, which we call L-DRF, is similar to the interleaving semantics

5

1. INTRODUCTION

of concurrent programs [51], but keeps thread-local (or per-thread) copies of the shared state.

Intuitively, our semantics works as follows. Apart from its local copy of the shared data state,

each thread t also maintains a per-variable version count, which is incremented whenever t

updates the variable. The exchange of information between threads is via buffers, associated

with the release points in the program. When a thread releases a lock, it stores its data state

to the corresponding buffer, along with the version counts of the variables. As a result, the

buffer of a release point records both the local data state and the variable versions as they

were when the release was last executed. When some thread t acquires a lock m, it compares

its per-variable version count with those in the buffers pertaining to release points associated

with m, and copies over the valuation of a variable to its local state, if it is newer in some buffer

(as indicated by a higher version count). Similar to a sync-CFG analysis, the value of a shared

variable in the local state of a thread may be stale. The L-DRF semantics leverages the race

freedom property to ensure that the value of a variable is correct in a local state at program

points where it is read.

It thus captures the essence of a sync-CFG analysis. The L-DRF semantics is also of

independent interest, since it can be viewed as an alternative characterization of the behavior

of data race free programs.

The analysis induced by the L-DRF semantics is shown to be sound for DRF programs.

In addition, the analysis is in a sense the most precise sync-CFG analysis one can hope for,

since at every point in a thread, the relevant part of the thread-local copy of the shared state

is guaranteed to arise in some execution of the program.

Using the L-DRF semantics as a basis, we now propose several precise and efficient relational

sync-CFG analyses. The soundness of these analyses all follow immediately, since they can

easily be shown to be consistent abstractions of the L-DRF analysis. The key idea behind

obtaining a sound relational analysis is suggested by the L-DRF analysis: at each acquire

point we apply a mix operator on the abstract values, which essentially amounts to forgetting

all correlations between the variables.

While these analyses allow maintaining fully-relational properties within thread-local states,

communicating information over cross-thread edges loses all correlations due to the mix oper-

ation. To improve precision further, we refine the L-DRF semantics to take into account data

regions. Technically, we introduce the notion of region race freedom and develop the R-DRF

semantics: the programmer can partition the program variables into “regions” that should be

accessed atomically. A program is region race free if it does not contain conflicting accesses

to variables in the same region, that are that are not separated by ordering constraints. The

6

classical notion of data race freedom is a special case of region race freedom where each region

consists of a single variable, and techniques to determine that a program is race free can be

naturally extended to determine region race freedom (see Section 5.2). For region race free

programs, R-DRF, which refines L-DRF by taking into account the atomic nature of accesses

that the program makes to variables in the same region, produces executions which are in-

distinguishable, with respect to reads of the regions, from the ones produced by L-DRF. By

leveraging the R-DRF semantics as a starting point, we obtain more precise sequential analyses

that track relational properties within regions across threads. This is obtained by refining the

granularity of the mix operator from single variables to regions.

We have implemented our analyses in a prototype analyzer called RATCOP (Relational

Analysis Tool for Concurrent Programs), and provide a thorough empirical evaluation in Chap-

ter 6. We show that RATCOP attains a precision of up to 65% on a subset of race-free programs

from the SV-COMP15 suite. In contrast, an interval based value-set analysis derived from [22]

was able to prove only 25% of the assertions. On a separate set of experiments, RATCOP turns

out to be nearly 5 orders of magnitude faster than a recent abstract interpretation based tool

[60].

1.1.1 Illustrative Example

We illustrate the L-DRF semantics, and its sequential abstractions, on the simple program in

Figure 1.1.

Thread t1() {

1: acquire(m);
2: x := y;
3: x++;
4: y++;
5: assert(x==y);
6: release(m);

}

Thread t2() {

8: z++;
9: assert(z==1);

10: acquire(m);
11: assert(x==y);
12: release(m);

}

Figure 1.1: A simple race free multi-threaded program. The variables x, y and z are shared
and initialized to 0.

We assume that all variables are shared and are initialized to 0. The threads access x and y

only after acquiring lock m. The program is free from data races. The sync-CFG representation

of the program, along with the data flow facts computed by our analyses is given in Figure 1.2.

7

1. INTRODUCTION

Figure 1.2: A simple race free program with two threads t1 and t2, with all variables being shared and
initialized to 0. The columns L-DRF and R-DRF show the facts computed by polyhedral abstractions
of our thread-local semantics and its region-parameterized version, respectively. The Value-Set column
shows the facts computed by interval abstractions of the Value-Set analysis of [22]. R-DRF is able to
prove all 3 assertions, while L-DRF fails to prove the assertion at line 11. Value-Set only manages to
prove the simple assertion at line 9.

A state in the L-DRF semantics keeps track of the following components: a location map pc

mapping each thread to the location of the next command to be executed, a lock map µ which

maps each lock to the thread holding it, a local environment (variable to value map) Θ for

each thread, and a function Λ which maps each buffer (associated with each location following

a release command) to an environment. Every release point of each lock m has an associated

buffer, where a thread stores a copy of its local environment when it executes the corresponding

release instruction. In the environments, each variable x has a version count associated with

it which, along any execution π, essentially associates this valuation of x with a unique prior

write to it in π. As an example, the “versioned” environment 〈x 7→ 11, y 7→ 11, z 7→ 00〉 says

that x and y have the value 1 by the 1st writes to x and y, and z has not been written to. An

8

Figure 1.3: The sync-CFG representation of the program in Figure 1.2 is presented on the left.
On the right is an excerpt of the standard product graph representation of the same program.
In a sequential setting, a control flow graph is a standard way to represent programs, where
each node denotes a control location, and edges represent flow of control. Each node in the
product graph represents a combination of possible program locations across threads, and an
edge between two such nodes represents an interleaving step. Any abstract analysis running on
the product graph will clearly not scale for large programs. The sync-CFG, on the other hand,
is a more sparse representation, resulting in improved scalability.

execution is an interleaving of commands from the different threads. Consider an execution

where, after a certain number of steps, we have the state pc(t1 7→ 6, t2 7→ 10),Θ(t1) = 〈x 7→
11, y 7→ 11, z 7→ 00〉,Θ(t2) = 〈x 7→ 00, y 7→ 00, z 7→ 11〉, µ(m) = t1,Λ = ⊥. The buffers are all

empty as no thread has executed a release yet. Note that the values (and versions) of x and y

in Θ(t2) are stale, since it was t1 which last modified them (similarly for z in Θ(t1)). Next, t1 can

execute the release at line 6, thereby setting µ(m) = and storing its current local state to

Λ(7). Now t2 can execute the acquire at line 10. The state now becomes pc(t1 7→ 7, t2 7→ 11),

µ(m) = t2, and t2 now “imports” the most up-to-date values (and versions) of the x and y from

Λ(7). This results in its local state becoming 〈x 7→ 11, y 7→ 11, z 7→ 11〉 (the valuations of x and

y are pulled in from the buffer, while the valuation of z in t2’s local state persists). The value

of x and y in Θ(t2) is no longer stale: L-DRF leveraged the race freedom to ensure that the

values of x and y are correct when they are read at line 11.

Roughly, we obtain sequential abstractions of L-DRF via the following steps:

9

1. INTRODUCTION

1. Provide a data abstraction of sets of environments

2. Define the state to be a map from locations to these abstract data values

3. Draw inter-thread edges by connecting releases and acquires of the same lock (as shown

in Figure 1.2).

4. Define an abstract mix operation which soundly approximates the “import” step outlined

earlier

5. Analyze the program as if it was a sequential program, with inter -thread join points (the

acquire’s) using the mix operator.

The analysis in [22] is precisely such a sequential abstraction, where the abstract data

values are abstractions of value-sets (variables mapped to sets of values). Value sets do not

track correlations between variables, and only allow coarse abstractions like Intervals [18]. The

mix operator, in this case, turns out to be the standard join. For Figure 1.2, the interval

analysis only manages to prove the assertion at line 9.

A more precise relational abstraction of L-DRF can be obtained by abstracting the envi-

ronments as, say, convex polyhedra [20]. As shown in Figure 1.2, the resulting analysis is more

precise than the interval analysis, being able to prove the assertions at lines 5 and 9. However,

in this case, the mix must forget the correlations among variables in the incoming states: it

essentially treats them as value sets. This is essential for soundness. Thus, even though the

acquire at line 10 obtains the fact that x = y from the buffer at 7, and the incoming fact from

9 also has x = y, it fails to maintain this correlation after the mix. Consequently, it fails to

prove the assertion at line 11.

Finally, one can exploit the fact that x and y form a data region, that is always accessed

atomically by the two threads. The program is thus region race free, for this particular region

definition. One can parameterize the L-DRF semantics with this region definition, to yield the

R-DRF semantics. The resulting sequential abstraction maintains relational information as

in polyhedra based analysis derived from L-DRF, but has a more precise mix operator which

preserves relational facts which hold within a region. Since both the incoming facts at line 10

satisfy x = y, the mix preserves this fact, and the analysis is able to prove the assertion at 11.

Note that in all the three analyses, we are guaranteed to compute sound facts for variables

only at points where they are accessed. For example, all three analyses claim that x and

y are both 0 at line 9, which is clearly wrong. However, x and y are not accessed at this

point. We make this trade-off for the soundness guarantee in order to achieve a more efficient

10

analysis. Also note that in Figure 1.2, the inter-thread edges add a spurious loop in the program

graph (and, therefore, in the analysis of the program), which prevents us from computing an

upper bound for the values of x and y. We show in a later section (Section 4.5) how we can

appropriately abstract the versions to avoid some of these spurious loops.

1.2 Detecting all High-Level Data Races in an RTOS

Kernel

In the first part of the thesis, we considered shared variable programs with explicit threads which

run in parallel. A typical example of such a system is the Java programming language, with

its threads library. In the second part of the thesis, we consider a different class of concurrent

programs. We deal with a system library like the kernel API of a real-time operating system

(RTOS). Such systems exhibit concurrent behaviors even without explicit thread creation, and

while running on a single-core architecture. The reason for this is the presence of interrupts,

which have the capability of preempting a currently executing task.

Our objective in this part of the work is to expose atomicity violations in the library func-

tions of such an kernel API. For this purpose, we introduce the notion of “high-level data races”.

Intuitively, a high-level race occurs when an execution interleaves instructions corresponding

to user-annotated critical accesses to shared memory structures. A high-level data race is a

necessary condition for there to be an atomicity violation.

We propose a technique for detecting all high-level data races in a system library like the

kernel API of a real-time operating system (RTOS) that relies on flag-based scheduling and

synchronization. In contrast to the abstract interpretation framework which we used in Part I,

our methodology here is based on model-checking, which allows our technique to have a low false

positive rate. However, standard model-checking techniques suffer from two drawbacks: they

are incomplete (they cannot prove the absence of defects), and suffer from scalability issues.

To circumvent these issues, our technique relies on a meta-argument to bound the number of

concurrently running tasks needed to orchestrate a race. This also results in gains in scalability.

We describe our approach in the context of FreeRTOS, a popular RTOS in the embedded

domain. While we detail our contributions in the context of FreeRTOS, the operating system

is quite representative of libraries in its class. Thus, our techniques generalize to other APIs

which permit interrupts, and follow a flag-based scheduling and synchronization paradigm.

11

1. INTRODUCTION

1.2.1 Overview of our Approach

Atomicity violations [36] precisely characterize the bugs in a method library that arise due to

concurrent use of the methods in the library. An execution of an application program that

uses the library is said to exhibit an atomicity violation if its behavior cannot be matched by

any “serialized” version of the execution, where none of the method calls interleave with each

other. As one may expect, such bugs can be pernicious and difficult to detect.

main() {

1: x = 0;
2: start(t1);
3: start(t2);
4: join(t1);
5: join(t2);
6: assert(x==2);

}

t1() {

7: acquire(m);
8: temp1 = x;
9: release(m);
10: temp1 = temp1 + 1;
11: acquire(m);
12: x = temp1;
13: release(m);

}

t2() {

14: acquire(m);
15: temp2 = x;
16: release(m);
17: temp2 = temp2 + 1;
18: acquire(m);
19: x = temp2;
20: release(m);

}

Figure 1.4: A simple program demonstrating an atomicity violation. The variable x is global.
The program is free from data races. Since it is initialized to 0, and the threads perform 2
increments to it, the expectation of a developer would be that x = 2 when the threads finish.
However, x can, in fact, be 1 at line 6.

Figure 1.4 shows a simple multi-threaded program with 3 threads, which can exhibit an

atomicity violation. The variable x is shared, and the program is free from data races. The

main thread spawns two child threads, each of which essentially increments x. However, the

critical section between lines 7 → 9 may immediately follow the critical section between lines

14→ 16. This causes both the temporary variables temp1 and temp2 to be set to 0. Thus, the

eventual value of x becomes 1, even though there are two logical increments to it. Note that

the execution which causes the value of x to be 1 at line 6 cannot be produced by any serial

invocation of the two increment methods.

This defect can be captured by marking lines 8 → 12 and 15 → 19 as critical accesses to

the x. Observe that it is necessary for these critical accesses to interleave in order to have an

atomicity violation.

A necessary condition for an atomicity violation to occur in a library L is that two method

invocations should be able to “race” (or interleave) in an execution of an application that

uses L. In fact it is often necessary for two “critical” access paths in the source code of the

methods (more precisely the instructions corresponding to them) to interleave in an execution,

12

to produce an atomicity violation. With this in mind, we could imagine that a user (or the

developer herself) annotates blocks of code in each method as critical accesses to a particular

unit of memory structures. We can now say that an execution exhibits a “high-level” race (with

respect to this annotation) if it interleaves two critical accesses to the same memory structure.

Suppose we now had a way of finding the precise set R of pairs of critical accesses that could

race with each other, across all executions in all applications programs that use L. We call this

the problem of finding all high-level races in L. The user can now focus on the set R, which

is hopefully a small fraction of the set of all possible pairs, and investigate each of them to see

whether they could lead to atomicity violations. We note that the user can soundly disregard

the pairs outside R as they can never race to begin with, and hence can never be the cause of

any atomicity violation.

In this paper we are interested in the problem of finding all high-level races in a library like

the Application Programmer Interface (API) of a real-time kernel. The particular system we

are interested in is a real-time operating system (RTOS) called FreeRTOS [64]. FreeRTOS is

one of the most popular operating systems in the embedded industry, and is widely used in

real-time embedded applications that run on micro-controllers with small memory. FreeRTOS

is essentially a library of API functions written in C and Assembly, that an application pro-

grammer invokes to create and manage tasks. Despite running on a single processor or core,

the execution of tasks (and hence the kernel API functions) can interleave due to interrupts

and context-switches, leading to potential races on the kernel data-structures.

The kind of control-flow and synchronization mechanisms that kernels like FreeRTOS use

are non-standard from a traditional programming point of view. To begin with, the control-flow

between threads is very non-standard. In a typical concurrent program, control could potentially

switch between threads at any time. However in FreeRTOS, control switching is restricted

and depends on whether interrupts have been disabled, the value of certain flag variables like

SchedulerSuspended, and whether the task is running as part of an interrupt service routine

(ISR). Secondly, FreeRTOS does not use standard synchronization mechanisms like locks, but

relies instead on mechanisms like disabling interrupts and flag-based synchronization. This

makes it difficult to use or adapt some of the existing approaches to high-level race detection

like [7, 81] or classical data race detection like [29, 82], which are based on standard control-flow

and lock-based synchronization.

An approach based on model-checking could potentially address some of the hurdles above:

one could model the control-flow and synchronization mechanism in each API function faith-

fully, create a “generic” task process that non-deterministically calls each API function, create

13

1. INTRODUCTION

a model (say Mn) that runs n of these processes in parallel, and finally model-check it for data-

races. But this approach has some basic roadblocks: certain races need a minimum number of

processes running to orchestrate it—how does one determine a sufficient number of processes

n that is guaranteed to generate all races? Secondly, even with a small number of processes,

the size of the state-space to be explored by the model-checker could be prohibitively large.

The approach we propose and carry out in this paper is based on the model-checking

approach above, but finds a way around the hurdles mentioned. The key idea is to create a set

of reduced models, say Mred , in which each model essentially runs only three API functions at

a time. We then argue that a race that shows up in Mn, for any n, must also be a race in one

of the reduced models in Mred . Model-checking each of these reduced models is easy, and gives

us a way of finding all data-races that may ever arise due to use of the FreeRTOS API. We

note that the number of API functions to run in each reduced model (three in this case), and

th argument of sufficiency, is specific to FreeRTOS. In general, this will depend on the library

under consideration.

On applying this technique to FreeRTOS (with our own annotation of critical accesses) we

found a total of 48 pairs of critical accesses that could race. Of these 10 were found to be false

positives (i.e. they could not happen in an actual execution of a FreeRTOS application). Of

the remaining, 16 were classified as harmful, in that they could be seen to lead to atomicity

violations. The bottom-line is that the user was able to disregard 99.8% of an estimated 41,000

potential high-level races.

1.3 Structure of this Thesis

The rest of this thesis is organized as follows. In Part I of this thesis (between Chapter 2

and Chapter 7) we devise efficient static analyses for the class of race free multi-threaded

programs. Chapter 2 sets up the mathematical notations, followed by the definition of the

standard interleaving semantics of programs. We conclude the chapter by precisely defining the

notion of data race freedom. Chapter 3 introduces a novel thread-local semantics called L-DRF,

which we show to be equivalent to the interleaving semantics. The computable abstractions

of the L-DRF semantics are discussed in Chapter 4. We then parameterize the L-DRF with

region definitions, and present more precise analyses in Chapter 5. Finally, we present our

experimental evaluation in Chapter 6 and conclude this part in Chapter 7.

In Part II of the thesis, we present a technique to detect all high-level data races in an RTOS

kernel. Chapter 8 provides an overview of the architecture of FreeRTOS. Next, Chapter 9 defines

what we mean by data races in executions of FreeRTOS applications. Chapter 10 describes

14

how we model the concurrency in FreeRTOS, as well as accesses to shared data structures. We

state and prove our reduction argument in Chapter 11. Finally, we present our experimental

evaluation in Chapter 12 and present related works in Chapter 13.

We conclude the thesis in Chapter 14, and provide pointers to future work.

15

1. INTRODUCTION

16

Part I

Thread-Local Semantics, and its

Efficient Abstractions, for Race Free

Programs

17

Chapter 2

Concurrent Programs and their

Interleaving Semantics

With this chapter commences the first part of this thesis, wherein our objective is to

devise efficient data flow analyses for the class of data race free (DRF) programs. In this

chapter, we will setup the mathematical notations we will be using throughout Part I

of this thesis (till Chapter 6). We also define the standard interleaving semantics for

concurrent programs, and provide the definition of data races.

2.1 Mathematical Notations

We use→ and ⇀ to denote total and partial functions, respectively, and ⊥ to denote a function

which is not defined anywhere. We use “ ” to denote an irrelevant value, which is implicitly

existentially quantified. We write S̄ to denote a (possibly empty) finite sequence of elements

coming from a set S. We denote the length of a sequence π by |π|, and the i-th element of π,

for 0 ≤ i < |π|, by πi. We denote the domain of a function φ by dom(φ) and write φ[x 7→ v]

to denote the function λy.if y = x then v else φ(y). Given a pair of functions ve = 〈φ, ν〉,
we write ve · φ and ve · ν to denote the φ and ν components of ve (note that the we always

consider a · b to associate from left to right), respectively.

This work was done in collaboration with Oded Padon, Sharon Shoham and Noam Rinetzky, at the Tel-Aviv
University, Israel, and Deepak D’Souza, at the Indian Institute of Science.

19

2. CONCURRENT PROGRAMS AND THEIR INTERLEAVING SEMANTICS

2.1.1 Programming Language and Programs

Type Syntax Description

Assignment x := e Assigns the value of expression e to variable x ∈ V

Assume assume(b) Blocks the computation if boolean condition b does not hold, else skip

Acquire acquire(m) Acquires lock m, provided it is not held by any thread

Release release(m) Releases lock m, provided the executing thread holds it

Table 2.1: Set of Program Commands, cmd

A multi-threaded program P consists of four finite sets: threads T, control locations L, program

variables V and locks (mutexes) M. We denote by V the set of values the program variables

can assume. Without loss of generality, we assume in this work that V is simply the set of

integers. Figure 2.1 summarizes the semantic domains we use and the meta-variables ranging

over them..

t ∈ T Thread identifiers

n ∈ L Program locations

x, y ∈ V Variable identifiers

l ∈ M Lock identifiers

r ∈ R Region identifiers

v ∈ V Values

pc ∈ PC ≡ T → L Program counters

µ ∈ LM ≡ M⇀ T Lock map

φ ∈ Env ≡ V→ V Environments

ν ∈ VV ≡ V→ N Variable versions

ve ∈ VE ≡ Env × VV Versioned environments

s = 〈pc, µ, φ〉 ∈ S ≡ PC × LM × Env Standard States

σ = 〈pc, µ,Θ,Λ〉 ∈ Σ ≡ PC × LM × (T → VE)× (L→ VE) Thread-Local States

Figure 2.1: Semantic Domains.

Every thread t ∈ T has an entry location ent t and a set of instructions inst t ⊆ L×cmd×L,

which defines the control flow graph of t. The set of program commands, denoted by cmd , is

20

defined in Table 2.1. A goto instruction from program location l to l′ can be simulated by the

instruction 〈l, assume(true), l′〉. Commands like fork and join of a bounded number of threads

and can be simulated using locks. In particular, the fork of a thread can be simulated by the

release of a particular lock, while the join operation can be simulated by a lock acquisition.

Figure 2.2 explains this in more detail using an example. The join operation can be simulated

in an analogous fashion. Note that, since we assume we are dealing with programs with a fixed

number of threads, any loop which creates threads must be bounded. Consequently, they may

be unrolled to this depth, and the aforementioned technique, of substituting forks with lock

acquisitions, can be applied. A similar argument applies to join statements within a loop.

main() {
...
fork(T1);

}

T1() {
start;
...

}

main() {
// assume main initially holds l_T1
...
release(l_T1);

}

T1() {
acquire(l_T1);
...

}

Figure 2.2: Simulating the forking of a thread using acquire and release instructions. For
each thread, we assume we have a unique “thread lock” associated with it (in fact, each thread
object in Java does have an unique associated monitor). We can assume that the main thread
initially holds all the thread locks. In the example above, the unique lock associated with T1

is called l T1. The left side of the code shows the actual code with fork, while the one on the
right is an equivalent code using commands from cmd . The fork of T1 is substituted with the
release(l T1), while the begin in T1 is substituted with acquire(l T1). In other words, the
first command T1 tries to execute is the acquisition of the lock l T1, and T1 can only proceed
if the lock acquisition succeeds.

For generality, we refrain from defining the syntax of the expressions e and boolean condi-

tions b. An instruction 〈ns, c, nt〉 comprises a source location ns, a command c ∈ cmd , and a

target location nt.

We denote the set of commands appearing in program P by cmd(P). We refer to an

assignment x := e as a write-access to x, and as a read-access to every variable that appears

in the expression e. Without loss of generality, we assume variables appearing in conditions of

assume() commands in instructions of some thread t do not appear in any instruction of any

other thread t′ 6= t. Local variables may be dealt with by appending them with their respective

thread identifiers, and then treating them as global variables.

21

2. CONCURRENT PROGRAMS AND THEIR INTERLEAVING SEMANTICS

We denote by Lt the set of locations in instructions of thread t, and require that the sets be

disjoint for different threads. For a location n ∈ L
(
=
⋃
t∈T Lt

)
, we denote by tid(n) the thread

t which contains location n, i.e., n ∈ Lt. We forbid different instructions from having the

same source and target locations, and further expect instructions pertaining to assignments,

acquire() and release() commands to have unique source and target locations. Let Lrel
t

be the set of program locations in the body of thread t following a release() command.

We refer to Lrel
t as t’s post-release points and denote the set of release points in a program

by Lrel =
⋃
t∈T L

rel
t . Similarly, we define t’s pre-acquire points, denoted L

acq
t , and denote a

program’s acquire points by Lacq =
⋃
t∈T L

acq
t . We denote the sets of post-release and pre-

acquire points pertaining to operations on lock m by Lrel
m and Lacq

m , respectively.

Figure 2.3: The example program from Figure 1.2.

We illustrate the definitions using an example. Consider again the program from Figure 1.2,

which we present in Figure 2.3, for ease of reference. Some example instructions in this program

are 〈2, x := y, 3〉 and 〈10, acquire(m), 11〉. The set Lt1 , which is the set of program locations

in thread t1, is {1, 2, 3, 4, 5, 6, 7}, and tid(8) = t2, and so forth. In this program, the set Lrel
t2

=

{13}, which is the set of post-release points in t2. The set of post-release points of the whole

program Lrel = {7, 13}. The set of pre-acquire points of the whole program Lacq = {1, 12}.
Since this program has a single lock m, Lrel

m = {7, 13} and Lacq
m = {1, 12}.

22

2.2 Interleaving Semantics

Let us fix a program P = (T,L,V,M). We define the standard interleaving semantics of a

program using a labeled transition system 〈S, sent ,TRs〉, where S is the set of states, sent ∈ S

is the initial state, and TRs ⊆ S× T × S is a transition relation, as defined below.

States. A state s ∈ S is a tuple 〈pc, µ, φ〉, where pc ∈ PC
def
= T → L records the program

counter (or location) of every thread, µ ∈ LM
def
= M ⇀ T is a lock map which associates

every lock to the thread that holds it (if such a thread exists), and φ ∈ Env
def
= V → V is an

environment, mapping variables to their values.

Initial State. We refer to the state sent = 〈λt. ent t,⊥, λx. 0〉 as the initial state. In sent

every thread is at its entry program location, no thread holds a lock, and all the variables are

initialized to zero.

Transition Relation. The transition relation TRs
P ⊆ S × T × S captures the interleaving

semantics of the program P . A transition τ = 〈s, t, s′〉, also denoted by s⇒t s
′, says that thread

t can execute a command which transforms (the source) state s to (the target) state s′. As such,

the transition relation is the set of all possible transitions generated by its commands, that is,

TRs
P =

⋃
c∈cmd(P) TRs

c. In these transitions, one thread executes a command and changes its

program counter accordingly, while all other threads remain stationary.

Intuitively, the semantics of the program commands are as follows. An assignment x := e

command updates the value of the variables according to the (possibly non-deterministic) ex-

pression e. An assume(b) command generates transitions only from states in which the (deter-

ministic) boolean interpretation of the condition b is true. An acquire(m) command executed

by thread t sets µ(m) = t, provided the lock m is not held by any other thread. A release(m)

command executed by thread t sets µ(m) = provided t holds m. A thread attempting to release

a lock that it does not own gets blocked.

For a transition τ = 〈pc, µ, φ〉 ⇒t 〈pc ′, µ′, φ′〉 ∈ TRs
P , we denote by tid(()τ) = t the

thread that executes the transition, and by c(τ) the (unique) command c ∈ cmd(P), such that

〈pc(t), c, pc ′(t)〉 ∈ inst t, which it executes.

The formal semantic definitions of the commands are given below.

• Assignment. We denote the set of valuations of a (possibly non-deterministic) expression

e, in an environment φ, by JeKφ ⊆ V. We define the meaning of assignments as a function

mapping an input environment to a set of environments.

Jx := eKs : Env → P(Env)
def
= λφ. {φ[x 7→ v] | v ∈ JeKφ}

23

2. CONCURRENT PROGRAMS AND THEIR INTERLEAVING SEMANTICS

• Assume. We denote the (deterministic) boolean interpretation of a boolean condition b,

in an environment φ, by JbKφ ∈ {true, false}. We define the meaning of assume commands

as a function mapping an input environment to a set of environments.

Jassume(b)Ks : Env → P(Env)
def
= λφ.

{φ} JbKφ = true

∅ otherwise

The set of transitions generated from an assume or an assignment command c is:

TRs
c = {〈pc, µ, φ〉 ⇒t 〈pc[t 7→ n ′], µ, φ′〉 | 〈pc(t), c, n ′〉 ∈ inst t ∧ φ′ ∈ JcKsφ}

• Acquire. An acquire(m) command executed by thread t assigns lock m to a thread t

by modifying the lock map µ, provided the lock is not held by any other thread, thus

making t the owner of the lock. The set of transitions pertaining to an acquire command

c = acquire(m) is

TRs
c = {〈pc, µ, φ〉 ⇒t 〈pc[t 7→ n ′], µ[m 7→ t], φ〉 | 〈pc(t), c, n ′〉 ∈ inst t ∧ µ(m) = }

• Release. A release(m) command executed by thread t makes lock m available by changing

µ to be undefined for m, provided t owns m. A thread attempting to release a lock that

it does not own gets stuck.1 The set of transitions pertaining to a release command

c = release(m) is

TRs
c = {〈pc, µ, φ〉 ⇒t 〈pc[t 7→ n ′], µ[m 7→], φ〉 | 〈pc(t), c, n ′〉 ∈ inst t ∧ µ(m) = t}

Transition Relation. The transition relation of the program P , denoted by TRs
P , is the set

of all possible transitions generated by its commands. Formally,

TRs
P =

⋃
c∈cmd(P)

TRs
c .

Executions. An execution π of the concurrent program P is a finite sequence of transitions

coming from its transition relation, such that sent is the source of transition π0 and the source

1The decision to block a thread releasing a lock it does not own was made to simplify the semantics. Our
results hold even if this action would have aborted the program instead.

24

state of every transition πi, for 0 < i < |π|, is the target state of transition πi−1. Where

convenient, we also write executions as sequences of states interleaved with thread identifiers:

π = s0 ⇒t1 s1 ⇒t2 . . . ⇒tn sn . Figure 2.4 shows an execution of the program in Figure 2.3 in

the standard semantics.

Figure 2.4: A typical execution of the program in Fig. 1.1 with two threads, in accordance to
the standard interleaving semantics. The execution is an interleaving of instructions from the
different threads, and is indicated by the solid arrows. The dashed arrows indicate a couple
of partial-orders induced by this execution: the program-order (po), which relates successive
instructions from the same thread, and synchronizes-with (sw), which relates successive syn-
chronization operations. The reflexive and transitive closure of these partial orders forms the
happens-before (hb) relation, induced by this particular execution. The write of x at location 2
in thread t1, and its subsequent read at location 11 in thread t2, can be seen to be related by
hb.

Collecting semantics. The collecting semantics of a program P , according to the standard

semantics, is the set of reachable states starting from the initial state sent . We define

Reachables(P) = {s | (sent ⇒t1 . . .⇒tn s) is an execution of P}

25

2. CONCURRENT PROGRAMS AND THEIR INTERLEAVING SEMANTICS

to be the set of reachable states of the program P . Then, Reachables(P) can be seen to be

equivalent to the least fixpoint of the functional Fs, where

Fs = λX. {sent} ∪ {s′ | ∃s ∈ X, t ∈ T : s⇒t s
′}

where X ∈ P(S). In other words, if JP Ks = LFP Fs, then

JP Ks = Reachables(P) (2.1)

2.3 Data Races and the Happens-Before Relation

Now that we have formally defined the standard interleaving semantics, we are in a position to

formally define what constitutes a data race. A standard way to formalize the notion of data

race freedom (DRF), is to use the happens before [50] relation induced by executions.

For a given execution of program P in the standard interleaving semantics, the happens-

before relation is defined as the reflexive and transitive closure of the program-order and

synchronizes-with relations, formalized below.

Definition 2.1 (Program order) Let π be an execution of P . The transition πi is related

to the transition πj according to the program-order relation in π, denoted by πi
po−→π πj, if

j = min {k | i < k < |π| ∧ t(πk) = t(πi)}, i.e., πi and πj are successive executions of commands

by the same thread.1

Definition 2.2 (Synchronize-with) Let π be an execution of P . The transition πi is related

to the transition πj according to synchronizes-with relation in π, denoted by πi
sw−→π πj, if

c(πi) = release(m) for some lock m, and j = min{k | i < k < |π| ∧ c(πk) = acquire(m) }, i.e.,

πi and πj are successive release and acquire commands of the same lock in the execution.

Definition 2.3 (Happens before) The happens-before relation pertaining to an execution π

of P , denoted by · hb−→π ·, is the reflexive and transitive closure of the union of the program-order

and synchronizes-with relations induced by π.

Note that transitions executed by the same thread are always related by program-order, and

are thus always related according to the happens-before relation.

1Strictly speaking, the various relations we define are between indices {0, . . . , |π| − 1} of an execution, and

not transitions, so we should have written, e.g., i
po−→π j instead of πi

po−→π πj . We use the informal latter
notation, for readability.

26

Definition 2.4 (Data Race) Let π be an execution of P . Transitions πi and πj constitute a

racing pair, or a data-race, if the following conditions are satisfied:

(i) c(πi) and c(πj) both access the variable x, with at least one of the accesses being a write

to x, and

(ii) neither πi
hb−→π πj nor πj

hb−→π πi holds.

To illustrate these definitions, consider the execution of the program of Figure 2.3 as shown

in Figure 2.4. The transitions where t1 executes x := y and the one where t1 executes x + +

are related by program-order. Likewise, some of the other program-order related transitions

are labeled ‘po’ in the figure. The transition where t1 releases the lock m, and the subsequent

transition where t2 acquires m, are related by the synchronizes-with relation (and is hence

marked ‘sw’). There is a happens-before path, denoted by the path comprising the dashed

arrows in Figure 2.4, between the writes to x by t1, and the subsequent read of x by t2. This path

is made up of pairs of transitions which are either related by program-order, or synchronizes-

with. Note that even though the instruction x := y is executed by t1 before t2 executes z + + in

the execution in Figure 2.4, these two instructions are not related by happens-before. Consider,

for a moment, if t2 did not have the acquire(m) instruction. Then, the transitions made by

t1 could never be happens-before related to the ones in t2 (due to the lack of sw relations). In

particular, the writes to x by t1 would not be happens-before ordered with the read of x in t2,

and we would have a data race in the execution.

In Part I of the thesis, we focus on efficient analyses for the class of race free programs.

27

2. CONCURRENT PROGRAMS AND THEIR INTERLEAVING SEMANTICS

28

Chapter 3

The Thread-Local Semantics L-DRF

In this chapter, we formally define a novel thread-local semantics for the class of data

race free programs, which we refer to as the L-DRF semantics. The L-DRF semantics

paves the way towards devising efficient “thread-local” data flow analyses for race free

concurrent programs. Like the standard interleaving semantics in the earlier chapter, we

present the L-DRF semantics of a program P as a labeled transition system. We then

prove that the L-DRF semantics is sound and complete with respect to the standard

semantics presented in Section 2.2, in the sense that for each trace of P in the standard

semantics, there is an “equivalent” trace in the L-DRF semantics, and vice versa.

3.1 Overview

Our thread-local semantics, like the standard one defined in Section 2.2, is based on the in-

terleaving of transitions made by different threads, and the use of a lock map to coordinate

the use of locks. However, unlike the standard semantics, where the threads share access to a

single global environment, in the L-DRF semantics, every thread has its own local environment

which it uses to evaluate conditions and perform assignments.

Threads exchange information through release buffers : every post-release point n ∈ Lrel
t

1of

a thread t is associated with a buffer, Λ(n), which records a snapshot of t’s local environment

the last time t ended up at the program point n. Recall that this happens right after t executes

the instruction 〈ns, release(m), n〉 ∈ inst t. When a thread t subsequently acquires the lock m,

it updates its local environment using the snapshots stored in all the buffers pertaining to the

release of m.

1Recall that Lrel
t is the set of all post-release points in the thread t.

29

3. THE THREAD-LOCAL SEMANTICS L-DRF

To ensure that t updates its environment such that the value of every variable is up-to-

date, every thread maintains its own version map ν : V → N, which associates a counter to

each variable. A thread increments ν(x) whenever it writes to x. Along any execution, the

version ν(x), for x ∈ V, in the version map ν of thread t, associates a unique prior write

with this particular valuation of x. It also reflects the total number of write accesses made

(across threads) to x to obtain the value of x stored in the map. A thread stores both its local

environment and ν in the buffer after releasing a lock m. When a thread subsequently acquires

lock m, it copies from the the release buffers at Lrel
m , the most up-to-date value (according to

the version numbers) of every variable. We prove that for data race free programs, there can

be only one such value.

3.2 The thread-local L-DRF semantics

Let P = (T,L,V,M) be a race free concurrent program. As in Section 2.2, we define the L-DRF

semantics of P in terms of a labeled transition system (Σ, σent ,TRP).

States. A state σ ∈ Σ in the L-DRF semantics is a tuple 〈pc, µ,Θ,Λ〉. The functions pc and

µ have the same role as in the standard semantics; that is, they record the program counter of

every thread and the ownership of locks, respectively. A versioned environment

ve = 〈φ, ν〉 ∈ VE = Env × (V→ N)

is a pair comprising an environment φ and a version map ν. The environment ve · φ is a

valuation of the program variables. The version map ve · ν assigns a “version count” to each

variable. The version count of a variable x is incremented by a thread t whenever it writes to

x. The version counts, as we explain in more detail later in this chapter, are used by a thread

to ensure it has the most up-to-date value and version of the variables in its local state. The

local environment map Θ : T → VE maps every thread to its local versioned environment and

Λ : Lrel → VE records the snapshots of versioned environments stored in buffers associated

with post-release points.

Initial State. The initial state is defined to be

σent = 〈λt. ent t,⊥, λt. veent ,⊥〉

where veent = 〈λx.0, λx.0〉. In σent , every thread is at its entry program location, no thread

holds a lock, all the thread-local versioned environments have all the variables and versions

initialized to 0, and the contents of each release buffer is undefined.

30

Transition Relation. The transition relation TRP ⊆ Σ × T × Σ captures the interleaving

nature of the L-DRF semantics of P . A transition τ = 〈σ, t, σ′〉, also denoted by σ ⇒t σ
′, says

that thread t can execute a command which transforms state σ ∈ Σ to state σ′ ∈ Σ. As is

the case in the standard semantics, in these transitions, one thread executes a command and

changes its program counter accordingly, while all other threads remain stationary.

The formal semantics definitions of each command is given below.

• Assignment. We define the meaning of an assignment command as a function from a

versioned environment to a set of versioned environments (in order to account for the non-

determinism). The function makes use of the standard interpretation of the expression

on the right-hand side over the environment component in the versioned environment. In

addition, assignments increment the version of a variable being assigned to. Formally,

Jx := eK : VE → P(VE) = λ 〈φ, ν〉 . {〈φ[x 7→ v], ν[x 7→ ν(x) + 1]〉 | v ∈ JeKφ}

where JeKφ denotes the value of the (possibly non-deterministic) expression e in φ.

• Assume. As with assignments, we define the meaning of an assignment command as a

function from a versioned environment to a set of versioned environments (in order to

account for the fact that an input environment may not satisfy the boolean condition).

This function also makes use of the standard (deterministic) interpretation of the boolean

condition b over the environment component in the versioned environment. Assume

commands do not alter either the valuation or the versions of any variables.

Jassume(b)K : VE → P(VE) = λ 〈φ, ν〉 .

{〈φ, ν〉} JbKφ = true

∅ otherwise

where JbKφ denotes the value of the boolean expression b in φ.

If c is either an assume() or an assignment command, then the set of transitions TRc

generated by c is given by:

TRc = {〈pc, µ,Θ,Λ〉 ⇒t 〈pc[t 7→ n ′], µ,Θ[t 7→ ve ′],Λ〉 | 〈pc(t), c, n ′〉 ∈ inst t∧ve ′ ∈ JcK(Θ(t))}

Note that for these commands each thread t only accesses and modifies its own local

versioned environment.

31

3. THE THREAD-LOCAL SEMANTICS L-DRF

• Acquire. An acquire(m) command executed by a thread t has the same effect on the lock

map component as in the standard semantics (see Section 2.2). In addition, it updates

the versioned environment Θ(t) based on the contents of the relevant release buffers. The

release buffers relevant to a thread when it acquires m are the ones at Lrel
m . Conversely, for

any post-release point n ∈ Lrel
m , we use the symbol G(n) to denote the set of pre-acquire

points which can observe the buffer Λ(n). In other words, G(n) are the set of pre-acquire

points for which Λ(n) is relevant. For our purposes, for any n ∈ Lrel
m , G(n) = Lacq

m
1.

The auxiliary function updEnv is used to update the value of each x ∈ V (along with its

version) in Θ(t), by taking its value from a snapshot stored at a relevant buffer which has

the highest version of x, if the latter version is higher than Θ(t) · ν(x). If the version of

x is highest in Θ(t) · ν(x), then t simply retains this value. Finding the most up-to-date

snapshot for x (or determining that Θ(t) · ν(x) is the highest) is the role of the auxiliary

function takex. It takes as input Θ(t), as well as the versioned environments in the relevant

release buffers, and returns the versioned environments for which the version associated

with x is the highest. We separately prove that, along any execution, if there is a state

in the L-DRF semantics σ with two component versioned environments (in thread local

states or buffers) ve1 and ve2 such that ve1 · ν(x) = ve2 · ν(x), then ve1φ(x) = ve2φ(x).

The set of transitions pertaining to an acquire command c = acquire(m) is

TRc = {〈pc, µ,Θ,Λ〉 ⇒t 〈pc[t 7→ n ′], µ[m 7→ t],Θ[t 7→ ve],Λ〉 |
〈pc(t), c, n ′〉 ∈ inst t ∧ µ(m) = ∧ ve ∈ updEnv(Θ(t),Λ)}

where updEnv : (VE × (Lrel → VE))→ P(VE) is given by

updEnv(ve,Λ) = {ve ′ |
∧
x∈V ∃vex ∈ takex(Y) : ve ′ · φ(x) = vex · φ(x)∧
ve ′ · ν(x) = vex · ν(x)}

with the set Y and the function takex being defined as

Y = {ve} ∪ {Λ(n̄) | n̄ ∈ Lrel
m

∧
pc(t) ∈ G(n̄)}

and

takex
def
= λY ∈ P(VE). {〈φ, ν〉 ∈ Y | ν(x) = max{ν ′(x) | 〈φ′, ν ′〉 ∈ Y }} .

Given a set of versioned environments, takex returns the set of versioned environments

where the version of x is the highest. The function updEnv is given access to the local

versioned environment of t, namely Θ(t), and the buffers Λ. For each variable x, the

1We outline, later on, that it is possible to refine the set Gn such that the resulting L-DRF semantics is still
equivalent to the interleaving semantics, but the abstract analyses derived from such an L-DRF semantics has
increased precision

32

function then extracts the versioned environment containing the highest version of x, in

either Θ(t) or one of the relevant buffers. Once it has this set of versioned environments,

it then proceeds to “mix” them.

As an example, consider again the execution of the program in Figure 1.2, presented in

Figure 3.1. When thread t2 is executes the acquire(m) instruction, the condition of the

relevant buffers and the thread local state of t2 is shown in Figure 3.2. The figure also

outlines the operation of the functions takex, takey and takey, and finally the operation

of the function updEnv .

Figure 3.1: An execution of program Figure 1.2 with 2 threads.

• Release. A release(m) command executed by a thread t has the same effect on the lock

map component of the state in the L-DRF semantics that it has in the standard semantics

(See Section 2.2). In addition, it stores the local versioned environment of t, Θ(t), in the

buffer associated with the post-release point of the executed release(m) instruction.

The set of transitions pertaining to a release command c = release(m) is

TRc = {〈pc, µ,Θ,Λ〉 ⇒t 〈pc[t 7→ n ′], µ[m 7→],Θ,Λ[n ′ 7→ Θ(t)]〉 | 〈pc(t), c, n ′〉 ∈ inst t∧µ(m) = t}

33

3. THE THREAD-LOCAL SEMANTICS L-DRF

Figure 3.2: Operation of the functions takex, takey, takez, and updEnv when t2 acquires m. The
superscripts indicate the versions.

Transition Relation. The transition relation TRP of program P according to the L-DRF

semantics, is the set of all possible transitions generated by its commands. Formally,

TRP =
⋃

c∈cmd(P)

TRc

Executions. An execution π̂ of the concurrent program P in the L-DRF semantics is a finite

sequence of transitions coming from its transition relation TRP , such that σent is the source of

transition π̂0 and the source state of every transition π̂i, for 0 < i < |π̂|, is the target state of

transition π̂i−1. Where convenient, we also write executions as sequences of states interleaved

with thread identifiers: π̂ = σ0 ⇒t1 σ1 ⇒t2 . . .⇒tn σn . where σi = 〈pci, µi,Θi,Λi〉.

Collecting Semantics. The collecting semantics of a program P , according to the L-DRF

semantics, is the set of reachable states starting from the initial state σent , which we denote as

Reachable(P).

Reachable(P) = {σ | (σent ⇒t1 . . .⇒tn σ) is a valid trace of P in L-DRF}

Then, Reachable(P) can be seen to be the least fixpoint of the functional F, where

34

F = λX. {σent} ∪ {σ′ | ∃σ ∈ X, ∃t ∈ T : σ ⇒t σ
′ ∈ TRP}

In other words, if JP K = LFP F, then

Reachable(P) = JP K (3.1)

3.3 Soundness and Completeness of L-DRF

In this section, we show that for the class of data race free programs, the thread local semantics

L-DRF is sound and complete with respect to the standard interleaving semantics. Intuitively,

the L-DRF and the standard semantics are “equivalent” since for each execution of a program

P in the standard semantics, one can find a corresponding execution in the L-DRF semantics

which coincides with the values read from the variables. Likewise, every execution of program

P in the L-DRF semantics has a corresponding execution in the standard semantics. As in

earlier chapters, we fix a program P = (T,L,V,M).

To formalize the above claim, we define a function which extracts a state in the interleaving

semantics from a state in the L-DRF semantics.

Definition 3.1 (Extraction Function χ)

χ : Σ→ S = λ 〈pc, µ,Θ,Λ〉 .
〈

pc, µ, λx.Θ

(
argmax

t∈T
Θ (t) ν(x)

)
φ(x)

〉
The function χ preserves the values of the program counters and the lock map, while it

takes the value of every variable x from the thread which has the maximal version count for x

in its local environment. χ is well-defined for admissible states where if Θ(t) ·ν(x) = Θ(t′) ·ν(x),

then Θ(t) · φ(x) = Θ(t′) · φ(x). We denote the set of admissible states by Σ̃. As we prove later

in Lemma 3.4, the L-DRF semantics only produces admissible states. The function χ can be

extended to executions in the L-DRF semantics by applying it to each state in the execution.

Formally, for any execution π̂ = σent ⇒t1 . . .⇒tn σn of program P in the L-DRF semantics:

χ (π̂)
def
= χ (σent)⇒t1 . . .⇒tn χ (σn)

We prove in Theorem 3.2 that the sequence χ (π̂) is indeed a valid trace of P in the inter-

leaving semantics. The following theorems state our soundness and completeness results.

35

3. THE THREAD-LOCAL SEMANTICS L-DRF

Theorem 3.1 Soundness. For any execution π of P in the interleaving semantics, there

exists a trace π̂ of P in the L-DRF semantics such that χ (π̂) = π.

Theorem 3.2 Completeness. For any trace π̂ of P in the L-DRF semantics, χ (π̂) is a

trace in the interleaving semantics of P .

In order to prove Theorem 3.1 and Theorem 3.2, we need to establish a few intermediate

results.

Lemma 3.1 In any execution π̂ in the L-DRF semantics of P , the version of any variable

x ∈ V in any component versioned environment of any state σ in π̂ is bounded by the total

number of writes to x preceeding it.

Proof: The only command which can increment the version of variable x in a versioned

environment is a write to x, of the form x := e. The other commands (assume, acquire and

release) only make copies of existing version counts. If there are n such write commands in

π̂, and the initial version count of x is 0 in all the component versioned environments of the

initial state σent , the version of x, in any component versioned environment of any state σ in π̂

can be at most n. 2

Lemma 3.2 Let π̂ = 〈pc0, µ0,Θ0,Λ0〉 ⇒t1 . . . ⇒tN 〈pcN , µN ,ΘN ,ΛN〉 be a trace in the

L-DRF semantics of program P . Let τj =
〈
pcj−1, µj−1,Θj−1,Λj−1

〉
⇒tj

〈
pcj, µj,Θj,Λj

〉
be a transition in π̂ which contains an access (read or write) to the variable x. Let τi =〈
pci−1, µi−1,Θi−1,Λi−1

〉
⇒ti 〈pci, µi,Θi,Λi〉 be the last transition, prior to τj, which contains

an assignment to x. Then,

Θj−1(tj) · ν(x) ≥ Θi(ti) · ν(x)

In other words, the version of x in Θ(tj) is no less than the version of x in the local state of ti

post the write at τi.

Proof: Figure 3.3 provides a pictorial description of the situation we are considering. Since

τi and τj both contain accesses to the variable x, and since the program P is assumed to be

free from races, we have τi
hb−→π̂ τj (indicated by the dotted arrows in Figure 3.3). Note that

the notion of a happens-before path, which we defined for the interleaving semantics, can be

naturally extended to L-DRF traces. The sequence of transitions in π̂ can also be viewed as an

interleaved execution, and the resulting happens-before path in π̂ contains the same sequence

of transitions as the happens-before path in the interleaved execution.

36

Figure 3.3: A typical execution of a program P in the L-DRF semantics. The solid arrows
represent the interleaved execution of the instructions from different threads. The dotted arrows
denote the happens-before path induced by this execution. The figure marks the sections of
the happens-before path which are program-order related (po), and the transitions related by
synchronizes-with(sw).

Claim: For each post-state σk of a transition τk, other than τj, in some happens-before path

ρ between τi and τj, we must have Θk(tk) · ν(x) ≥ Θi(ti) · ν(x). We prove the claim using

induction on the position n of a transition in ρ.

Base Case. If n = 1, then τi and τj must be related by program order, which implies ti = tj and

j = i + 1. This implies the absence of any intervening transitions which can alter the version

of x in the local state of ti, post τi, until τj. Thus, the result holds for n = 1.

Inductive Case. Assume that the hypothesis holds for all transitions at positions k ≤ n in ρ.

We now consider a transition at index n+ 1. We denote this transition as

τv =
〈
pcv−1, µv−1,Θv−1,Λv−1

〉
⇒tv 〈pcv, µv,Θv,Λv〉

and the n-th transition as

τu =
〈
pcu−1, µu−1,Θu−1,Λu−1

〉
⇒tu 〈pcu, µu,Θu,Λu〉

There are two possible cases here. Either τu
po−→π̂ τv, and consequently tu = tv. This implies

37

3. THE THREAD-LOCAL SEMANTICS L-DRF

the absence of any intervening transitions which can alter the version of x in the local state

of tu, post τu, until τv. Thus, the result holds. On the other hand, if τu
sw−→π̂ τv, then c(τu)

must be the release of some lock m, and c(τv) must be the acquire of m. By the L-DRF

semantics of acquire, thread tv will observe the buffer associated with the release command

of τu. Consequently,

Θv(tv) · ν(x) ≥ Θu(tu) · ν(x) by the semantics of the acquire command

and Θu(tu) · ν(x) ≥ Θi(ti) · ν(x) by the inductive hypothesis

=⇒ Θv(tv) · ν(x) ≥ Θi(ti) · ν(x)

Thus, the hypothesis holds in this case as well. This proves the claim.

Returning to the proof of the lemma, let τ ′ = 〈pc ′, µ′,Θ′,Λ′〉 be the last transition, before τj, in

the happens-before path between τi and τj. Since τj is not a synchronization operation, it must

be the case that τ ′
po−→π̂ τj, which implies t′ = tj. By the earlier claim, Θ′(tj)·ν(x) ≥ Θi(ti)·ν(x),

and the absence of any intervening instructions, between τ ′ and τj, which can alter the version

of x, we infer that Θj−1(tj) · ν(x) ≥ Θi(ti) · ν(x). 2

Lemma 3.3 Let π̂ = 〈pc0, µ0,Θ0,Λ0〉 ⇒t1 . . . ⇒tN 〈pcN , µN ,ΘN ,ΛN〉 be an execution in the

L-DRF semantics of a program P , and let τi =
〈
pci−1, µi−1,Θi−1,Λi−1

〉
⇒ti 〈pci, µi,Θi,Λi〉

denote the i-th transition in the trace. If c(τi) is an assignment to x, then

Θi(ti) · ν(x) = |{j | j ≤ i ∧ c(τj) is an assignment to x}|

That is, at the post-state of an assignment to a variable x by thread t, the version of x in

the local versioned environment of t equals the total number of writes made to x till that point.

Proof: We prove this lemma using the following claim. Let π̂ be an execution of length N in

the L-DRF semantics of P . If the N -th transition of π̂ is of the form x := e, then

ΘN(tN) · ν(x) = |{j | j ≤ N ∧ c(τj) is an assignment to x}|

Note that this claim implies the original statement of the lemma, since any prefix of length

i of an L-DRF execution is also a valid execution of length i in the L-DRF semantics. We

prove our claim using induction on N .

Base Case. The claim vacuously holds for N = 0, since the 0 length L-DRF trace does not

contain any write to x.

38

Inductive Case. Assume the claim holds for all 0 ≤ N ≤ n. Consider the case when N = n+1,

and the command associated with c(τn+1 involves a write to x. The n+ 1 execution π̂ is of the

form

〈pc0, µ0,Θ0,Λ0〉 ⇒t1 . . .⇒tn+1

〈
pcn+1, µn+1,Θn+1,Λn+1

〉
Let the last write to x, prior to c(τn+1), be in the transition τi. Since the program is data

race free, τi
hb−→π̂ τn+1. By inductive hypothesis,

Θi(ti) · ν(x) = |{j | j ≤ i ∧ c(τj) is an assignment to x}|

=m (say)

We now infer the following:

Θn(tn+1) · ν(x) ≥ m from Lemma 3.2 and

Θn(tn+1) · ν(x) ≤ m from Lemma 3.1

Therefore, Θn(tn+1) · ν(x) = m

Since τn+1 increments the version of x in Θn+1(tn+1) · ν, we have

Θn+1(tn+1) · ν(x) = Θn(tn+1) · ν(x) + 1

= m+ 1

= |{j | j ≤ i ∧ c(τj) is an assignment to x}|+ 1

= |{j | j ≤ n+ 1 ∧ c(τj) is an assignment to x}|

This completes the proof of the claim, and therefore the lemma. 2

Corollary 3.1 Let π̂ be a trace in the L-DRF semantics of P , and let τi = σi−1 ⇒ti σi (the i-th

transition in π̂) contain an access (read or write) to the variable x. Let m be the highest version

count of x among all component versioned environments in σi−1. Then, σi−1Θ(ti) · ν(x) = m.

In other words, whenever a thread accesses a variable x, the version of x is the highest in its

local versioned environment.

Proof: We prove the result via induction on the length N of the trace π̂.

39

3. THE THREAD-LOCAL SEMANTICS L-DRF

Base Case. The result vacuously holds for N = 0, since the 0 length trace does not contain

any transitions.

Inductive Case. Assume that the result holds for all traces of length 0 ≤ N . Consider a trace

π̂′ of length n + 1. The (n + 1)’th transition in this trace is τn+1 = σn ⇒tn+1 σn+1. We case

split on c(τn+1). The result continues to holds if c(τn+1) is either an acquire or a release

command, since such commands do not involve any variable accesses. If, instead, c(τn+1) is

either an asssume or an assignment command, let x be any variable accessed (either read-from,

or written-to) in the command. Let τi be the last write to x in π̂′, prior to τn+1. Since the

program is free from races, τi
hb−→π̂′ τn+1. Let the total number of writes to x in π̂′, including

τi, be w. By Lemma 3.1, for any component versioned environment ve in σn,

ve · ν(x) ≤ w

Thus, w is the highest version count of x in any component versioned environment in σn. By

Lemma 3.2,

σn ·Θ(tn+1) · ν(x) ≥ w

Thus, σn ·Θ(tn+1) · ν(x) = w, and the result holds for the trace of length (n+ 1). This proves

the lemma. 2

Lemma 3.4 Let σent ⇒t1 . . . ⇒tN σN be an execution of P in the L-DRF semantics. Then,

for any σi, with two component versioned environments (in thread local states or buffers) ve1

and ve2, if ve1ν(x) = ve2ν(x), then ve1φ(x) = ve2φ(x).

Proof: [Lemma 3.4] We prove the lemma using induction on the length of the trace. Let P(N)

denote the following hypothesis. Let σent ⇒t1 . . .⇒tN σN be an execution of P in the L-DRF

semantics of length N ≥ 0. Then, for any σi, with two component versioned environments

(in thread local states or buffers) ve1 and ve2 such that ve1 · ν(x) = ve2 · ν(x), we must have

ve1 · φ(x) = ve2 · φ(x). We outline the inductive arguments.

Base Case. For N = 0, the trace contains the single state σent . By the definition of σent , for

any two component thread local states (the buffers are initially empty) ve1 and ve2 such that

ve1 · ν(x) = ve2 · ν(x), we have ve1 · φ(x) = ve2 · φ(x). Thus P(0) holds.

Inductive Case. Assume P holds for all executions of length k, where 0 ≤ k ≤ n. We show

that P(n+ 1) holds. Let π̂ be an execution of P in the L-DRF semantics of length n+ 1, and

let τn+1 = σn ⇒tn+1 σn+1 be the last transition in π̂′. We case-split on c(τn+1).

P(n + 1) trivially holds if c(τn+1) is either an assume or a release, since these commands do

40

not alter any versions or values.

If c(τn+1) = acquire(m), then tn+1 updates its local versioned environment based on its local

versioned environment, and the versioned environments at relevant buffers. By the inductive

hypothesis, for two component versioned environments ve1 and ve2 of σn, such that ve1 ·ν(x) =

ve2 · ν(x), we have ve1 · φ(x) = ve2 · φ(x). By the semantics of the acquire, tn+1 copies over

the version and the valuation of x from one such ve (including, possibly, tn+1’s local versioned

environment) in σn. Thus, P(n+ 1) holds.

If c(τn+1) = x := e, then tn+1 updates the version and valuation of x in its local versioned

environment. By Lemma 3.1, in any component versioned environment ve in σn, we must have

ve · ν(x) ≤ |{j | j ≤ n ∧ c(τj) is an assignment to x}|

where the right-hand side denotes the total number of writes to x, excluding the write in

τn+1. By Lemma 3.3,

σn+1 ·Θ(tn+1) · ν(x) = |{j | j ≤ n+ 1 ∧ c(τj) is an assignment to x}|

This implies, for any component versioned environment ve ′ in σn+1, other than the local

versioned environment of tn+1,

ve ′ · ν(x) < Θn+1(tn+1) · ν(x)

Since none of the other versioned environments are modified, P(n + 1) continues to hold for

such pairs of ve1 and ve2. Thus, P(N) holds for all N ≥ 0. 2

This proves that the L-DRF semantics only generates admissible states. Thus, χ is well-

defined on any state which arises in the L-DRF execution of a program P .

Corollary 3.2 (χ (π̂) is well-defined) For any execution π̂ in the L-DRF semantics of P ,

χ(π̂) is well-defined.

Proof: The function χ is only defined for admissible states, and by Lemma 3.4, the L-DRF

semantics only produces executions containing admissible states. Thus, for any trace π̂, χ(π̂)

is well-defined. 2

We now proceed to prove the soundness and completeness results (Theorem 3.1 and Theo-

rem 3.2).

Proof: [Soundness, Theorem 3.1] We first outline the idea behind the proof, using Figure 3.4.

For any trace π of P in the interleaving semantics, we obtain a corresponding trace π̂ in the L-

41

3. THE THREAD-LOCAL SEMANTICS L-DRF

Figure 3.4: The proof obligation for Soundness. For any n + 1 length trace π of program P
in the standard semantics, we show that there exists a n + 1 length trace π̂ in the L-DRF
semantics, such that χ (π̂) = π.

DRF semantics by taking the same interleaving of instructions from the threads. Our inductive

hypothesis is that every N length interleaving execution has a corresponding N length L-DRF

execution. We now consider a N + 1 length execution π in the interleaving semantics, and we

show that there exists a state σn+1, using which we can extend the N length L-DRF trace to

create a N + 1 length trace which is χ equivalent to π.

We prove the result using induction on the length of the traces. Let P(N) denote the

following hypothesis. For any trace

π = 〈pc0, φ0, µ0〉 ⇒t1 . . .⇒tN 〈pcN , φN , µN〉

of program P in the standard semantics, there exists a trace

π̂ = 〈pc0, µ0,Θ0,Λ0〉 ⇒t1 . . .⇒tN 〈pcN , µN ,ΘN ,ΛN〉

in the L-DRF semantics such that χ (π̂) = π. We outline the inductive arguments.

Base Case. For N = 0, the execution π contains the single state sent . The length 0 L-DRF

execution contains the single state σent . Since χ(σent) = sent , P(0) holds.

Inductive Case. Assume that P(k) holds for all executions of length k, where 0 ≤ k ≤ n. We

42

prove that P(n+ 1) holds. Consider a n+ 1 length execution

π = 〈pc0, φ0, µ0〉 ⇒t1 . . .⇒tn+1

〈
pcn+1, φn+1, µn+1

〉
of program P in the interleaving semantics. We denote by π[1 . . . n] the n-length prefix of π.

By the inductive hypothesis, there exists a trace

π̂′ = 〈pc0, µ0,Θ0,Λ0〉 ⇒t1 . . .⇒tN 〈pcn, µn,Θn,Λn〉

of length n in the L-DRF semantics, such that π[1 . . . n] = χ (π̂′). Note that this implies that

χ (σn) = sn (3.2)

where σn = 〈pcn, µn,Θn,Λn〉. We show that there exists a state σn+1 =
〈
pcn+1, µn+1,Θn+1,Λn+1

〉
in the L-DRF semantics, such that χ (σn+1) = sn+1 and τ = σn ⇒tn+1 σn+1 ∈ TRP , such that

c(τ) = c(πn+1) (where πn+1 is the n+ 1-th transition in π). This would prove, in turn, that the

L-DRF trace π̂′.τ satisfies the property χ (π̂′.τ) = π. We show this proof obligation diagram-

matically in Figure 3.4. Note that, by Corollary 3.2, the function χ is well-defined for all the

L-DRF traces we deal with. Let the last instruction in πn+1 be 〈l, c, l′〉, where

l = pcn

c = c(πn+1) (3.3)

l′ = pcn+1

Note that, by construction, the pc and µ components of σn+1 and sn+1 are made equal. We

now case split on c.

• acquire(m): Consider the state σn+1 as follows:

Θn+1 = Θn[tn+1 7→ updEnv(Θn(tn+1),Λn)]

Λn+1 = Λn

Since σn · µ = sn · µ, the lock acquisition succeeds from both sn and σn. By the L-DRF

semantics of acquire, σn ⇒t σn+1 ∈ TRP . Since the acquire does not change the

maximum version, and the corresponding value, of each x ∈ V between σn and σn+1, we

have χ (σn+1) = sn+1. Thus P(n+ 1) holds.

43

3. THE THREAD-LOCAL SEMANTICS L-DRF

• release(m): Consider the state σn+1 as follows:

Θn+1 = Θn

Λn+1 = Λn[l′ 7→ Θn(tn+1)]

Since σn · µ = sn · µ, the lock release succeeds from both sn and σn. By the L-DRF

semantics of release, σn ⇒t σn+1 ∈ TRP . Since the release does not change the

maximum version, and the corresponding value, of each x ∈ V between σn and σn+1, we

have χ (σn+1) = sn+1. Thus P(n+ 1) holds.

• assume(b): Consider the state σn+1 as follows:

Θn+1 = Θn (3.4)

Λn+1 = Λn (3.5)

Consider an arbitrary variable x that is read in the condition b. By Corollary 3.1, in σn,

the version of x is highest in Θn(tn+1). This implies, for any such variable x (since by

inductive hypothesis, χ (σn) = sn),

φn(x) = Θn(tn+1) · φ(x)

=⇒ JeKφn = JeKΘn(tn+1) · φ (3.6)

Since, by assumption, sn ⇒t sn+1 ∈ TRs
P , and by Equation (3.6), we conclude that

σn ⇒t σn+1 ∈ TRP . Since the assume does not alter the maximum version, and the

corresponding value, of each x ∈ V between σn and σn+1, we have χ (σn+1) = sn+1. Thus

P(n+ 1) holds.

• x := e: Consider the state σn+1 as follows:

Θn+1 = Θn[tn+1 7→ ve ′]

Λn+1 = Λn

where ve ′ = 〈φ′, ν ′〉 such that

44

φ′ = Θn(tn+1) · φ[x 7→ φn+1(x)]

ν ′ = ν ′′[x 7→ ν ′′(x) + 1]

where ν ′′ = Θn(tn+1) · ν. Consider an arbitrary variable y that is read in the expression

e. By Corollary 3.1, in σn, the version of y is highest in σn · Θ(tn+1). This implies, for

any such variable y ∈ V,

φn(y) = Θn(tn+1) · φ(y)

=⇒ JeKφn = JeKΘn(tn+1) · φ

=⇒ φn+1 ∈ JeKΘn(tn+1) · φ (3.7)

Coupled with the definition of ν ′, this proves that

ve ′ ∈ Jx := eKΘn(tn+1) (3.8)

which allows us to conclude that σn ⇒t σn+1 ∈ TRP . By Lemma 3.3 and the construction

of σn+1, the version of x is highest in Θn+1(tn+1), among all other component versioned

environments of σn+1. This, coupled with the fact that no other versions are modified,

we conclude that χ (σn+1) = sn+1. Consequently, P(n+ 1) holds.

Thus, P(N) holds for all N ≥ 0. 2

Proof: [Completeness, Theorem 3.2] We outline the proof idea, using Figure 3.5. Here, the

situation is inverse of that in Figure 3.4. Here, we consider any trace π̂ in the L-DRF semantics

of P , and we show that the sequence χ (π̂) is a valid execution of P in the interleaving semantics.

Our inductive hypothesis is on the length N of the L-DRF trace. When we consider a length

N + 1 length L-DRF execution π̂′, we know there exists an execution π in the interleaving

semantics corresponding to the N length prefix of π̂′. We show that we can extend π by using

χ (σn+1) in order to obtain an N + 1 length execution in the interleaving semantics, which is χ

related to π̂′.

We prove the result using induction on the length of the L-DRF execution. Let P(N)

denote the following hypothesis. For any trace π̂ of program P in the L-DRF semantics, χ (π̂)

is a valid trace of P in the standard semantics. We prove the result using induction on the

45

3. THE THREAD-LOCAL SEMANTICS L-DRF

Figure 3.5: The proof obligation for Completeness. For any n+ 1 length trace π̂ of program P
in the L-DRF semantics, we show that χ (π̂) is a valid a n+1 length trace of P in the standard
semantics.

length N of the trace π̂.

Base Case. For N = 0, the trace π̂ contains the single state σent . Since χ (σent) = sent , which

is a valid length 0 trace of P in the standard semantics, P(0) holds.

Inductive Case. Assume that P holds for all L-DRF traces of length n ≥ 0. We show that

P(n+ 1) holds too. Consider an arbitrary (n+ 1) length trace

π̂ = σent ⇒t1 . . .⇒tn+1 σn+1

of P in the L-DRF semantics, where each σi = 〈pci, µi,Θi,Λi〉. We show that χ (π̂) is a

valid trace of P in the standard semantics. We show the proof obligation diagrammatically in

Figure 3.5. If π̂[1 . . . n] denotes the n length prefix of the execution π̂, then by the induction

hypothesis,

χ (π̂[1 . . . n]) = (s0 ⇒t1 . . .⇒tn sn)

is a valid execution of P in the interleaving semantics. We let sn+1 = χ (σn+1) and show that

sn ⇒tn+1 sn+1 ∈ TRs
P .

We case split on c(τn+1), where τn+1 is the last transition in π̂. We denote χ (σn+1) as sn+1.

46

If c(τn+1) is either an acquire or a release, then since the lock maps are the same in both

sn and σn, the lock acquisition (or release) succeeds from sn. Moreover, since neither of the

commands alter the versions between σn and σn+1, we have sn · φ = sn+1 · φ. Thus, sn ⇒tn+1

sn+1 ∈ TRs
P , and P(n+ 1) holds.

If c(τn+1) is assume(b), then, by Corollary 3.1, the version of any variable x read in the condition

b is highest in Θn(tn+1). Moreover, since χ (σn) = sn (by induction hypothesis), for any variable

x accessed in the condition b, we must have

envn(x) = Θn(tn+1) · φ(x)

This implies, JbKφn = JbKΘn(tn+1)φ. Thus, sn ⇒tn+1 sn+1 ∈ TRs
P , and P(n+ 1) holds.

Finally, we consider the case when c(τn+1) is an assignment statement of the form x := e. In a

manner analogous to the case of the assume earlier, we can prove that JeKφn = JeKΘn(tn+1) ·φ.

By, Lemma 3.3, the version of x in σn+1 is highest in Θn+1(tn+1). Thus,

φn+1(x) = Θn+1(tn+1) · φ(x) (3.9)

Since the assignment command is always enabled, and by Equation (3.9), we obtain sn ⇒tn+1

sn+1 ∈ TRs
P , and P(n+ 1) holds.

Thus, P holds for all L-DRF traces of length N ≥ 0. 2

Corollary 3.3 For any race free concurrent program P , the L-DRF analysis is precise. In other

words, consider an arbitrary state σ = 〈pc, µ,Θ,Λ〉 in JP K. Let S be the set of variables which

are relevant 1 at pc(t), for some thread t. Then there exists a trace π = sent ⇒t1 . . .⇒tn sn of

P in the standard semantics, such that for some si = 〈pci, µi, φi〉 with pci(t) = pc(t), we have

∀x ∈ S : φi(x) = Θ(t) · φ(x)

Proof: If σ ∈ JP K, then there must exist an execution π̂ = σent ⇒t1 . . . ⇒t σ of P in the

L-DRF semantics. By Theorem 3.2, χ (π̂) = sent ⇒t1 . . . ⇒t s is a valid trace of P in the

standard semantics, where χ (σ) = s. By Corollary 3.1, the version of each x ∈ S is highest in

Θ(t), among all component versioned environments in σ. By the construction of the function

χ, we have, for each variable x ∈ S, φi(x) = Θ(t) · φ(x). 2

Remark.ill now we assumed that buffers associated with every post-release point in Lrel
m

1Recall that a set of variables are relevant at a program point if they are accessed (either read from or
written to) in a command at that point.

47

3. THE THREAD-LOCAL SEMANTICS L-DRF

are relevant to each pre-acquire point in Lacq
m . That is, ∀n ∈ Lrel

m : G(n) = Lacq
m . However, if no

(standard) execution of the program P contains a transition τi (with the target location being

n) which synchronizes-with a transition τj (with source location n′ ∈ Lacq
m), then Theorem 3.1

(as well as Theorem 3.2) holds even if we remove n′ from G(n). This is true because in race-

free programs, conflicting accesses are ordered by the happens-before relation. Thus, if the

most up-to-date value of a variable accessed by t was written by another thread t′, then in

between these accesses there must be a (sequence of) synchronization operations starting at a

lock released by t′ and ending at a lock acquired by t. This refinement of the set G based on the

above observation can be used to improve the precision of the analyses derived from L-DRF,

as it reduces the set of possible release points an acquire can observe.

48

Chapter 4

Sequential Abstractions of the L-DRF

semantics

In this chapter, we show how to employ standard sequential analyses to compute sound ap-

proximations of the L-DRF semantics. We call this class of sequential analyses “sync-CFG

based analyses”, since these can be thought of as analyzing concurrent programs represented

as the sync-CFG control flow structure, with each thread operating on local copies of the data

states, and communication between the threads limited to synchronization points alone. The

sync-CFG representation of a concurrent program P (which was first introduced in [22]) com-

prises the control flow graphs of each static thread code, augmented with synchronizes-with

edges between synchronization operations (like releases and acquires of the same lock).

A sync-CFG differs from the standard “product-graph” representation of concurrent pro-

grams in two important ways:

1. The sync-CFG contains nodes corresponding to each control location in the concurrent

program P . In contrast, the product graph contains nodes corresponding to every possible

combination of control locations in P .

2. Each execution of P corresponds to some path in its product graph representation. A

sync-CFG does not maintain such a correlation. In fact, a sync-CFG ensures that for

each execution of P , every happens-before path induced by the execution corresponds to

some path in the sync-CFG. Since the sync-CFG does not soundly approximate the set of

possible executions of P , this has some interesting implications regarding the soundness

of the analyses which use it. In particular, data flow facts computed for a variable are

guaranteed to be sound only at relevant points, where the variable is accessed. The facts

49

4. SEQUENTIAL ABSTRACTIONS OF THE L-DRF SEMANTICS

may be unsound elsewhere.

As an example, consider again the program in Figure 1.2. The sync-CFG representation of

the program is given on the left in Figure 1.3. On the other hand, an excerpt of the product-

graph of this program is shown on the right of the same figure. As one may expect, any analysis

based on the product graph would be infeasible for large programs.

Thanks to Theorem 3.1 and Theorem 3.2, we can now devise computable and efficient

abstract analyses for data race free concurrent programs using the sync-CFG. In particular,

this also allows us to establish the soundness of the value-set based analysis [22] by casting it

as an abstract interpretation of the L-DRF semantics.

Technically, the class of sync-CFG analyses are derived by two (successive) abstraction

steps: First, we abstract the L-DRF semantics using a thread-local cartesian abstraction which

ignores version numbers and forgets the correlation between the local states of the different

threads. This results in cartesian states where every program point is associated with a set of

(thread-local) environments. The form of these cartesian states is precisely the one obtained

when computing the collecting semantics of sequential programs. Thus, they can be further

abstracted using any sequential abstraction, including relational ones. This allows maintaining

correlations between variables at all points except synchronization points (acquires and releases

of locks).

We make the initial decision to abstract away the versions for simplicity. We will refine this

abstraction later on in the chapter.

4.1 Theory of Consistent Abstractions

In this section, we recall the theory of consistent abstractions from [19]. An abstract interpre-

tation, or simply an analysis, of a program P is a structure A = (D,≤, f), where

• D is the domain and ≤ is a partial ordering on D such that (D,≤) forms a complete

lattice

• f : D → D is a monotone transfer function

By the Tarski fixpoint theorem [77], f has a least fixpoint in D, which we denote as JfKA.

Given analyses C = (D,≤, f) and A = (D′,≤′, f ′), we say A is a consistent abstraction of

C, if there exists functions α : D → D′ (called the abstraction function), and γ : D′ → D

(called the concretization function), such that

50

1. α and γ form a Galois connection, which entails

(a) α and γ are monotonic

(b) α and γ satisfy

∀d ∈ D : γ(α(d)) ≥ d

∀d′ ∈ D′ : α(γ(d′)) = d′

2. JfKC ≤ γ(Jf ′KA)

Theorem 4.1 (Sufficient Condition for Consistent Abstraction, [19]) Given analyses C =

(D,≤, f) and A = (D′,≤′, f ′), sufficient conditions for A to be a consistent abstraction of C

are the following:

1. there exists functions α : D → D′, and γ : D′ → D, such that α and γ form a Galois

connection.

2. f ′ safely approximates f , in that

∀d ∈ D : α(f(d)) ≤′ f ′(α(d))

4.2 A-DRF : A Canonical sync-CFG Analysis based on

L-DRF

In this section, we define a canonical abstract analysis, operating on the sync-CFG represen-

tation of an input data race free program P , derived from the L-DRF semantics. We then

prove the soundness of A-DRF by showing that it satisfies the sufficient conditions outlined in

Section 4.1, which imply that the least fixpoint solution of A-DRF is a sound approximation

of the least fixpoint solution of L-DRF. As before, we fix a data race free concurrent program

P = (T,L,V,M).

4.2.1 Thread-Local Cartesian Abstract Domain

The abstract domain is a complete lattice over cartesian states, functions mapping program

locations to sets of environments, ordered by point-wise inclusions. We denote the set of

cartesian states of P in the A-DRF analysis by A×, and range over it using a×.

D× ≡ 〈A×,v×〉 where A× ≡ L→ P(Env) and a× v× a′× ⇐⇒ ∀n ∈ L. a×(n) ⊆ a′×(n)

51

4. SEQUENTIAL ABSTRACTIONS OF THE L-DRF SEMANTICS

The abstraction function α× maps a set of L-DRF states C ⊆ Σ to a cartesian state

a× ∈ A×. The abstract value α×(C)(n) contains the collection of t’s environments (where

t = tid(n)) coming from any state σ ∈ C where t is at location n. In addition, if n is a post-

release point, α×(C)(n) also contains the contents of the buffer Λ(n) for each state σ ∈ C. As

a first cut, we abstract away the versions entirely. In a later section, we outline how to recover

the versions in order to improve the precision of the abstract analyses.

The concretization function γ× maps a cartesian state a× to a set of (admissible) L-DRF

states C in which the local state of a thread t, when t is at program point n ∈ Lt, comes from

a×(n) and the contents of the release buffer pertaining to the post-release location n ∈ Lrel

also comes from a×(n).

α× : P(Σ)→ A×,

where α×(C) = λn ∈ L. {φ | 〈pc, µ,Θ,Λ〉 ∈ C ∧ pc(tid(n)) = n ∧ 〈φ, ν〉 = Θ(tid(n))} ∪
{φ | 〈pc, µ,Θ,Λ〉 ∈ C ∧ n ∈ Lrel ∧ 〈φ, ν〉 = Λ(n)}

γ× : A× → P(Σ),

where γ×(a×) =

〈pc, µ,Θ,Λ〉 ∈ Σ

∣∣∣∣∣∣∣
pc ∈ PC ∧ µ ∈ LM ∧
∀t ∈ T : Θ(t) = 〈φ, λx. 〉 ∧ φ ∈ a×(pc(t)) ∧
∀n ∈ Lrel : Λ(n) = 〈φ, λx. 〉 ∧ φ ∈ a×(n)}


4.2.2 Abstract Transitions

The abstract cartesian semantics is defined using a transition relation, TR× ⊆ A× × T ×A×.

• Assignment. Since we have already abstracted away the version numbers, we define the

meaning of assignments commands c using their interpretation according to the standard

semantics, denoted by JcKs. The set of transitions generated by an assignment command

c is:

TR×c =

a× ⇒×t a×
n ′ 7→ a×(n ′) ∪

⋃
φ∈a×(n)

JcKs(φ)

 ∣∣∣∣∣〈n, c, n ′〉 ∈ inst t


• Assume. Similar to the assignment commands, the semantics of the assume commands c

make use of their interpretation according to the standard semantics. The set of transi-

tions generated by an assume command c is:

TR×c =

a× ⇒×t a×
n ′ 7→ a×(n ′) ∪

⋃
φ∈a×(n)

JcKs(φ)

 ∣∣∣∣∣〈n, c, n ′〉 ∈ inst t


52

• Acquire. With the omission of any information pertaining to ownership of locks, an

acquire command executed at program location n is only required to over-approximate

the effect of updating the environment of a thread based on the contents of all buffers

relevant to n. To do so, we define an abstract mix operation which mixes together different

environments at the granularity of single variables. The set of transitions pertaining to

an acquire command c = acquire(m) is

TR×c = {a× ⇒×t a×[n ′ 7→ Emix] | 〈n, c, n ′〉 ∈ inst t} , where

Emix = mix (a×(n ′) ∪
⋃
{a×(n̄) | n̄ ∈ Lrel

m ∧ n ∈ G(n̄)}) , and

mix : P(Env)→ P(Env) ≡ λB×.{φ′ | ∀x ∈ V,∃φ ∈ B× : φ′(x) = φ(x)}

In other words, the mix takes a cartesian product of the input states. Note that as a result

of abstracting away the version numbers, a thread cannot determine the most up-to-date

value of a variable, and thus conservatively picks any possible value found either in its

own local environment or in a relevant release buffer. Figure 4.1 illustrates the operation

of the mix function.

Figure 4.1: Illustrating the mix on a set of containing two environments φ1 and φ2. Observe
that the invariant x = y holds in the input environments. However, since this mix operates at
the granularity of single variables, the correlation is lost in the output states.

• Release. Interestingly, the effect of release commands in the cartesian semantics is the

53

4. SEQUENTIAL ABSTRACTIONS OF THE L-DRF SEMANTICS

same as skip: This is because the abstraction neither tracks ownership of locks nor

explicitly manipulates the contents of buffers. Hence, the set of transitions pertaining to

a release command c = release(m) is

TR×c = {a× ⇒×t a×[n ′ 7→ a×(n ′) ∪ a×(n)] | 〈n, c, n ′〉〉 ∈ inst t}

4.3 The LFP solution of A-DRF

The set of abstract transitions generated by the program P is

TR× =
⋃

c∈cmd(P)

TR×c

The least fixpoint formulation of the A-DRF analysis is given by

JP K× = LFP F× where

F× = λa×. a
ent
×
⊔
×
(⊔
×{a′× | ∃t ∈ T :

(
a× ⇒×t a′×

)
∈ TR×}

)
, where

aent× = α×({σent})

The initial state aent× maps the entry location of every thread to the set containing the

single environment, where all the variables are initialized to 0. Every other program location

is mapped to the empty set.

Note that the least fixpoint formulation of P in the A-DRF analysis can be viewed as the

collecting semantics of a sequential program P ′ obtained by augmented the control-flow graphs

of the threads in P with edges from post-release points n ′ to pre-acquire points n in n ∈ G(n ′),

and where a special mix operator is used to combine information at the acquire points. Further,

note that we abstract the environment of buffers and their corresponding release location into

a single entity, which is the standard over-approximation of the set of environments at a given

program location. Hence, the concurrent analysis of P can be reduced to the sequential analysis

of P ′, provided a sound over-approximation of the mix operator is given. This is why our

technique allows one to quickly port an existing sequential analysis to an analysis for race free

concurrent programs. Lastly, the thread-local cartesian abstract analysis is expressed as the

LFP of a first-order equation, where the only unknown is the set of reachable states. This

is unlike the analysis formulated in [59], which is an abstract interpretation formulation of

the rely-guarantee paradigm [88]. The latter analysis has two unknowns: the set of reachable

states and the set of “interferences”. Consequently, the analysis in [59] involves a nested fixpoint

54

computation.

The analysis in [22] is obtained by abstracting the thread-local cartesian states using the

value set abstraction on the environments domain. Note that in the value set domain, where

every variable is associated with (an over approximation of) the set of its possible values, the

mix operator reduces to a join operator.

4.4 Soundness of the Sequential Abstractions

The soundness of the sequential abstractions is expressed by the following theorem.

Theorem 4.2 (Soundness of Sequential Abstractions) γ×(JP K×) ⊇ JP K .

Figure 4.2: The proof obligation for proving that the analysis F× is a consistent abstraction of
the L-DRF analysis F.

Proof: In order to prove this theorem, we show that the analysis F× is a consistent abstraction

of the L-DRF analysis F (presented in Section 3.2). Recall that the L-DRF analysis is

F = λX. {σent} ∪ post(X) where

post(X) = {σ′ | ∃σ ∈ X, ∃t ∈ T : σ ⇒t σ
′ ∈ TRP}

For ease of reference, we rewrite the analysis F× as

F× = λX. {aent× }
⊔
× post×(X) where

post×(X) =
⊔
×{a′× | ∃t ∈ T : a× ⇒×t a′× ∈ TR×}

We already defined an abstraction α× and concretization γ× function between the domain

P(Σ), of F, and the domain A×, of F×, earlier in this chapter. It is fairly straightforward to

55

4. SEQUENTIAL ABSTRACTIONS OF THE L-DRF SEMANTICS

show that α× and γ× satisfy the conditions for forming a Galois connection. We now prove

that the post× function is a sound abstraction of post . Consider an arbitrary set of states

X = {σ1, . . . , σ, . . . σm}

The post operator chooses some σ ∈ X, and makes a transition σ ⇒t σ
′, which is made

possible by some instruction 〈n, c, n′〉 ∈ inst t, where n = σ · pc(t). This results in

X ′ = {σ1, . . . , σ
′, . . . σm}

We let a× = α×(X), and denote the resulting abstract state after t executes the instruction

〈n, c, n′〉 as a′×.

We define the set S as

S = {φ | ∃σ ∈ X : σ ·Θ(t) = 〈φ, ν〉 ∧ σ · pc(t) = n}

In other words, S is set of all thread-local environments of t, in states in X where t is at

control location n. By the construction of α×,

S ⊆ α×(X)(n)

In an analogous fashion, we define the set S ′ as

S ′ = {φ | ∃σ ∈ X ′ : σ ·Θ(t) = 〈φ, ν〉 ∧ σ · pc(t) = n′}

We need to prove that

S ′ ⊆ a′×(n′)

This proof obligation is pictorially depicted in Figure 4.2. We case split on c, the command

in the instruction 〈n, c, n′〉.

• Assignments and Assume. By the construction of α×, (σ · Θ(t) · φ) ∈ a×(n). Thus, by

the L-DRF semantics and the A-DRF analysis, (σ′ · Θ(t) · φ) ∈ a′×(n′). Again, by the

construction of α×, we know that

{φ | ∃σ ∈ X : σ ·Θ(t) = 〈φ, ν〉 ∧ σ · pc(t) = n′} ⊆ a×(n′) (4.1)

56

Since none of the other states σ′ ∈ X are altered by this transition, and since the A-DRF

analysis takes a union of the existing elements at a×(n′) in the computation of a′×(n′), we

have

S ′ ⊆ a′×(n′)

• Release. By the construction of α×,

(σ ·Θ(t) · φ) ∈ a×(n)

By the semantics of the the release in the A-DRF analysis, and since σ′ ·Θ(t) = σ ·Θ(t),

we have

(σ′ ·Θ(t) · φ) ∈ a′×(n′)

Coupled with Equation (4.1) and the fact that the A-DRF analysis takes a union of the

existing elements at a×(n′) in the computation of a′×(n′), we have

S ′ ⊆ a′×(n′)

• Acquire. In this case, n chooses to take the value of a variable x in the thread-local

environment of t, from the versioned environment ve in some relevant buffer, or the

existing thread-local environment of t. By the construction of α×, if ve was chosen from

some post-release point n̄, then this environment is guaranteed to exist in a×(n̄). Likewise,

if ve is simply the thread-local versioned environment of t, then the environment would

be in a×(n). Since, by the semantics of the acquire in the A-DRF analysis, all the

environments at all such n̄, and the environment at n, is taken into account in the mix ,

and since this operation is performed for each variable x ∈ V,

(σ′ ·Θ(t) · φ) ∈ a×(n′)

Coupled with Equation (4.1) and the fact that the A-DRF analysis takes a union of the

existing elements at a×(n′) in the computation of a′×(n′), we have

S ′ ⊆ a′×(n′)

57

4. SEQUENTIAL ABSTRACTIONS OF THE L-DRF SEMANTICS

This completes the proof. 2

Remark.t is worth noting at this point that the main cause behind the loss in precision

in the A-DRF analysis is the mix operator, applied at the inter-thread join points. Since

the function operates at the granularity of individual variables, it essentially takes a cartesian

product of the input environments, resulting in quite severe loss of precision.

4.5 Other abstractions of L-DRF

The analysis in [22] can be obtained, with an additional abstraction, from A-DRF. A value-set

domain VS maps each program variable to a set of values, that is, VS : V→ P(V). Thus, we

define the value-set abstraction function αvs : A× → VS as

αvs(a×) = λn. (λx ∈ V.{v | ∃φ ∈ a×(n) : φ(x) = v})

With this join of the abstract domain, the abstract mix operator reduces to the standard

value-set join operation (which takes a component wise union of the value-sets).

We can improve upon A-DRF by not forgetting the versions entirely. We augment A× with

a set S of “recency” information based on the versions as follows:

S = λC.{t̄ | ∃σ ∈ C, x ∈ V :

(
argmax

t∈T
σΘ(t)ν(x)

)
= t̄}

In other words, S soundly approximates the set of threads which contain the most up-to-date

value of some variable x ∈ V. This additional information can now be used to improve the

precision of mix .

Figure 4.3: A simple program demonstrated the benefit of using thread-identifiers in the ab-
stract state. In the normal setting, the synchronizes-with edges creates a cycle in the program,
and it is not possible to derive an upper bound on the value of x. However, if we track thread-
identifiers in the state, thread t1 observes that any state it receives from t2 is tagged with the
{t1}, and thus t1 can safely drop the data flow facts.

58

In the program shown in Figure 4.3, thread t1 writes to x, while holding the lock m, whereas

thread t2 reads from x while holding m. In the usual sync-CFG setting, the synchronizes-with

edges creates a cycle in the program graph. Thus, the data flow facts propagate back and

forth between the threads, and the analysis, in this example, fails to derive an upper bound

for the value of x. In the recency based analysis, the data flow fact comprises elements from

A×, as well as a set S of thread-identifiers. Whenever a thread writes to a variable, it adds its

identifier to S. Other commands do not affect S. In the example, t1 adds its identifier to S,

and this is propagated to t2. However, since t2 does not write to x, the set S is propagated

back, unaltered, to t1. The thread t1 now finds that the incoming data flow fact contains a

singleton S, with its thread-identifier, which indicates it is receiving a stale fact. Had any other

thread written to x, it would contain at least two thread-identifiers. This allows the thread

to safely drop the data flow fact, thereby breaking the cycle. An abstract analysis based on

thread-identifiers can, in fact, prove an upper bound for x.

In our experiments, we further abstract A-DRF using numerical domains like octagons and

intervals.

59

4. SEQUENTIAL ABSTRACTIONS OF THE L-DRF SEMANTICS

60

Chapter 5

A Region-Parameterized version of

L-DRF

In this chapter, we introduce a refined notion of data race freedom, based on data regions,

and derive from it a more precise abstract analysis capable of transferring some relational

information between threads at synchronization points. The objective is to modify the L-DRF

semantics such that the abstract mix operates at a granularity higher than individual variables.

5.1 Why do we need another semantics?

Figure 4.1 outlines the key issue with the L-DRF semantics: any abstract analysis derived from

the L-DRF semantics must make use of an abstract mix which operates at the granularity of

individual variables. Thus, even though two variables may be related in the input environments

to mix (like x = y in Figure 4.1), the function must necessarily forget their correlation after the

mixing. This is essential for soundness. This is the reason that prevents us from proving the

assertion x = y at line 11 in the motivating example in Figure 1.2. Even though the acquire(m)

in t2 obtains the fact x = y from both its input edges, it fails to maintain this correlation post

the mix.

Essentially, regions are a user-defined partitioning of the set of program variables. We call

each partition a region r, and denote the set of regions as R and the region of a variable x by

rg(x).

The semantics precisely tracks correlations between variables within regions across inter-

thread communication, while abstracting away the correlations between variables across regions.

This partitioning is based on the semantics of the program: developers often write code where a

group of variables form a logical cluster. Typically, some invariant holds on the variables within

61

5. A REGION-PARAMETERIZED VERSION OF L-DRF

a region, though there may not necessarily be such a correlation between variables across re-

gions. The semantics operates accordingly: it precisely tracks correlations between variables

within regions across inter-thread communication, while abstracting away the correlations be-

tween variables across regions. With suitable abstractions, the tracked correlations can improve

the precision of the analysis for programs which conform to the notion of race freedom defined

below.

5.2 Region Race Freedom

We present a refinement of the standard notion of data race freedom by ensuring that variables

residing in the same region are manipulated atomically across threads. A region-level data race

occurs when two concurrent threads access variables from the same region r (not necessarily

the same variable), with at least one access being a write, and the accesses are devoid of any

ordering constraints.

A command x := e constitutes a write access to the region rg(x), and a read access of every

region rg(y), for each variable y appearing in the expression e. Similarly, a command assume(b)

constitutes a read access of every region rg(y), for each variable y appearing in the condition

b. We are now in a position to introduce our notion of region level races.

Definition 5.1 (Region-level races) Let P be a program and let R be a region partitioning

of P . An execution π of P , in the standard interleaving semantics, has a region-level race if

there exists 0 ≤ i < j < |π|, such that c(πi) and c(πj) both access variables in region r ∈ R, at

least one access is a write, and it is not the case that πi
hb−→π πj.

The problem of checking for region races can be reduced to the problem of checking for data

races as follows. We introduce a fresh variable Xr for each region r ∈ R. We now transform the

input program P to a program P ′ with the following additions.

• We precede every assignment statement x := e, where rw is the region which is written to,

and r1, . . . , rn are the regions read, with a sequence of instructions Xrw := Xr1 ; . . . Xrw :=

Xrn ;.

• Statements of the form assume(b) do not need to be changed because b may refer only to

thread-private variables.

• The acquire and release statements do not involve the access of any variable. Thus,

they remain unmodified.

62

Note that these modifications do not alter the semantics of the original program (for each trace

of P there is a corresponding trace in P ′, and vice versa). We now check for data races on the

variables Xr’s.

5.3 The R-DRF semantics

The R-DRF semantics is obtained via a simple change to the L-DRF semantics, a write-access

to a variable x leads to incrementing the version of every variable that resides in x’s region. In

other words, the semantics of the assignment command is as follows:

Jx := eK : VE → P(VE) = λ 〈φ, ν〉 . {〈φ[x 7→ v], ν[y 7→ ν(y) + 1]〉 | v ∈ JeKφ ∧ y ∈ V ∧ rg(x) = rg(y)}

It is easy to see that Theorems 3.1 and 3.2 hold if we consider the R-DRF semantics instead of

the L-DRF semantics, provided the program is region race free with respect to the given region

specification. Hence, we can analyze such programs using abstractions of R-DRF and obtain

sound results with respect to the interleaving semantics (Section 2.2).

5.3.1 Thread-Local Abstractions of the R-DRF Semantics

The cartesian abstractions defined in Section 4 can be extended to accommodate regions in a

natural way. The only difference lies in the definition of the mix operation, which now operates

over regions, rather than variables:

mix : P(Env)→ P(Env)
def
= λB×.{φ′ | ∀r ∈ R, ∃φ ∈ B× : ∀x ∈ V. rg(x) = r

=⇒ φ′(x) = φ(x)}

where the function rg maps a variable to its region. Mixing environments at the granularity

of regions is permitted because the R-DRF semantics ensures that all the variables in the same

region have the same version. Thus, their most up-to-date values reside in either the thread’s

local environment or in one of the release buffers. As before, we can obtain an effective analysis

using any sequential abstraction, provided that the abstract domain supports the (more precise)

region based mix operator.

5.4 Illustrative Example

We illustrate the effect of the regions using some small examples. Consider again the situation

in Figure 4.1. Recall that even though the input environments maintained x = y, the mix was

unable to preserve this correlation because it operated at the granularity of individual variables.

However, when mix is made aware of the region definitions, it maintains the correlation between

63

5. A REGION-PARAMETERIZED VERSION OF L-DRF

variables within a region. Thus, in Figure 5.1, the invariant x = y continues to hold in the

output state.

Figure 5.1: Illustrating the operation of mix when it is aware of regions. In this example, with
the regions being 〈{x, y}, {z}〉, the function maintains the correlation between x and y in the
output.

Returning to the program in Figure 1.2, consider the situation at the acquire at line 10

(illustrated in Figure 5.2). It receives the invariant x = y from both its input branches. The

mix in the polyhedral abstraction of L-DRF only outputs the correct bounds for the variables,

and forgets the correlation between x and y. However, the region aware mix preserves this

invariant, which enables the analysis derived from R-DRF to prove the assertion at line 11.

Figure 5.2: The improved precision of the region aware mix derived from the R-DRF semantics
allows it to prove the additional assertion at line 11 in Figure 1.2.

64

Chapter 6

Implementation and Experiments

6.1 RATCOP: Relational Analysis Tool for COncurrent

Programs

In this section, we perform a thorough empirical evaluation of our analyses using a prototype

analyzer which we have developed, called RATCOP1, for the analysis of race-free concurrent

Java programs. RATCOP comprises around 4000 lines of Java code, and implements a variety

of relational analyses based on the theoretical underpinnings described in earlier sections of

this paper. Through command line arguments, each analysis can be made to use any one of

the following three numerical abstract domains provided by the Apron library [46]: Convex

Polyhedra (with support for strict inequalities), Octagons and Intervals. RATCOP also makes

use of the Soot [79] analysis framework. The tool reuses the code for fixed point computation

and the graph data structures in the implementation of [22].

The tool takes as input a Java program with assertions marked at appropriate program

points. We first checked all the programs in our benchmarks for dataraces and region races using

Chord [62]. For detecting region races, we have implemented the translation scheme outlined

in Section 5.2. RATCOP then performs the necessary static analysis on the program until a

fixpoint is reached. Subsequently, the tool automatically tries to prove the assertions using

the inferred facts (which translates to checking whether the inferred fact at a program point

implies the assertion condition): if it fails to prove an assertion, it dumps the corresponding

inferred fact in a log file for manual inspection. Figure 6.1 summarizes the set of operations in

RATCOP.

1The project artifacts are available at https://bitbucket.org/suvam/ratcop

65

6. IMPLEMENTATION AND EXPERIMENTS

Figure 6.1: Overview of RATCOP.

As benchmarks, we use a subset of concurrent programs from the SV-COMP 2015 suite

[9]. We ported the programs to Java and introduced locks appropriately to remove races. As

we mentioned earlier, we use [62] to ensure the absence of races. We also use a program from

[58], which is abstraction of a producer-consumer scenario. While these programs are not too

large, they have challenging invariants to prove, and provide a good test for the precision of

the various analyses. We ran the tool in a virtual machine with 16GB RAM and 4 cores. The

virtual machine, in turn, ran on a machine with 32GB RAM and a quad-core Intel i7 processor.

We evaluate 5 analyses on the benchmarks, with the following abstract domains:

1. A1: Without regions and thread identifiers 1.

2. A2: With regions, but with no thread identifiers.

3. A3: Without regions, but with thread identifiers.

4. A4: With regions and thread identifiers.

The analyses A1 - A4 all employ the Octagon numerical abstract domain. And finally,

5. A5: The value-set analysis of [22], which uses the Interval domain.

In terms of the precision of the abstract domains, the analyses form the following partial

order: A5 ≺ A1 ≺ A3 ≺ A4 and A5 ≺ A1 ≺ A2 ≺ A4. We use A5 as the baseline.

1By thread-identifiers we are referring to the abstraction of the versions outlined in Remark Section 4.5

66

6.2 Evaluation

6.2.1 Porting Sequential Analyses to Concurrent Analyses.

For the sequential commands, we perform a lightweight parsing of statements and simply re-use

the built-in transformers of Apron. The only operator we need to define afresh is the abstract

mix. Since Apron exposes functions to perform each of the constituent steps, implementing the

abstract mix is straight forward as well.

6.2.2 Precision and Efficiency.

Fig. 6.1 summarizes the results of the experiments.

A1 A2 A3 A4 A5
Program LOC Threads Asserts

X
Time
(ms)

X
Time
(ms)

X
Time
(ms)

X
Time
(ms)

X
Time
(ms)

reorder 2 106 5 2 0(C) 77 2(C) 43 0(C) 71 2(C) 37 0 25

sigma B* 118 5 5 0 132 0 138 4 48 4 50 0 506
sssc12 98 3 4 4 76 4 90 4 82 4 86 2 28
unverif 82 3 2 0 115 0 121 0 84 0 86 0 46

spin2003 65 3 2 2 6 2 9 2 10 2 10 2 8
simpleLoop 74 3 2 2 56 2 61 2 57 2 64 0 27
simpleLoop5 84 4 1 0 40 0 50 0 31 0 37 0 20

doubleLock p3 64 3 1 1 11 1 24 1 16 1 19 1 9
fib Bench 82 3 2 0 138 0 118 0 129 0 102 0 56
fib Bench

Longer
82 3 2 0 95 0 103 0 123 0 91 0 35

indexer 119 2 2 2 1522 2 1637 2 1750 2 1733 2 719

twostage 3 B 93 2 2 0 61 0 48 0 57 0 28 0 59
singleton

with uninit
59 2 1 1 31 1 29 1 14 1 10 1 28

stack 85 2 2 0 151 0 175 0 127 0 129 0 71
stack longer 85 1 2 0 1163 0 669 0 1082 0 1186 0 597
stack longest 85 2 2 0 1732 0 1679 0 1873 0 2068 0 920

sync01 * 65 2 2 2 7 2 25 2 37 2 33 2 10
qw2004 * 90 2 4 0 1401 4 1890 0 1478 4 1913 0 698

[58] Fig. 3.11 89 2 2 0 49 2 46 0 54 2 36 0 19

Total 1625 3 (Avg) 42 14
361

(Avg)
22

366
(Avg)

18
374

(Avg)
26

406
(Avg)

10
204

(Avg)

Table 6.1: Summary of the experiments. Superscript B indicates that the program has an actual bug.
(C) indicates the use of Convex Polyhedra as abstract data domain. “*” indicates a program where
we have altered/weakened the original assertion. The X column indicates the number of assertions
the tool was able to prove.

While all the analyses failed to prove the assertions in reorder 2, A2 and A4 were able to

prove them when they used convex polyhedra instead of octagons. Since none of the analyses

track arrays precisely, all of them failed to prove the original assertion in sigma (which involves

checking a property involving the sum of the array elements). However, A3 and A4 correctly

detect a potential array out-of-bounds violation in the program, by indicating that the loop

67

6. IMPLEMENTATION AND EXPERIMENTS

index can, in fact, equal the length of the array. The improved precision is due to the fact

that A3 and A4 track thread identifiers in the abstract state, which avoids spurious read-

write cycles in the analysis of sigma. The program twostage 3 has an actual bug, and the

assertions are expected to fail. This program provides a “sanity check” of the soundness of

the analyses. Programs marked with “*”” contain assertions which we have altered completely

and/or weakened. In these cases, the original assertion was either expected to fail or was too

precise (possibly requiring a disjunctive domain in order to prove it). In qw2004, for example,

we prove assertions of the form x = y. A2 and A4 perform well in this case, since we can

specify a region containing x and y, which precisely track their correlation across threads. The

imprecision in the remaining cases are mostly due to the program requiring disjunctive domains

to discharge the assertions, or the presence of spurious write-write cycles which weakens the

inferred facts.

Of the total 40 “valid” assertions (excluding the two in twostage 3), A4 is the most precise,

being able to prove 65% of them. It is followed by A2 (55%), A3 (45%), A1 (35%) and, lastly,

A5 (25%). Thus, the new analyses derived from L-DRF and R-DRF perform significantly

better than the value-set analysis of [22]. Moreover, this total order respects the partial ordering

between the analyses defined earlier.

With respect to the running times, the maximum time taken, across all the programs, is

around 2 seconds, by A4. A5 turns out to be the fastest in general, due to its lightweight

abstract domain. A2 and A4 are typically slower that A1 and A3 respectively. The slowdown

can be attributed to the additional tracking of regions by the former analyses.

6.3 Comparing with a current abstract interpretation

based tool.

We also compared the efficiency of RATCOP with that of Batman, a tool implementing the

previous state-of-the-art analyses based on abstract interpretation [59, 60] (a discussion on the

precision of our analyses against those in [59] is presented in Chapter 7). The basic structure

of the benchmark programs for this experiment is as follows: each program defines a set of

shared variables. A main thread then partitions the set of shared variables, and creates threads

which access and modify variables in a unique partition. Thus, the set of memory locations

accessed by any two threads is disjoint. In our experiments, each thread simply performed a

sequence of writes to a specific set of shared variables. In some sense, these programs represent

a “best-case” scenario because there are no interferences between threads. Unlike RATCOP,

the Batman tool, in its current form, only supports a small toy language and does not provide

68

the means to automatically check assertions. Thus, for the purposes of this experiment, we

only compare the time required to reach a fixpoint in the two tools. We compare A3 against

Batman running with the Octagon domain and the BddApron library [45] (Bm-oct).

#Threads A3 Time (ms) Bm-oct Time (ms)
2 61 7706
3 86 82545
4 138 507663
5 194 2906585
6 261 13095977
7 368 53239574

Table 6.2: Running times of RATCOP (A3) and Batman (Bm-oct) on loosely coupled threads.
The number of shared variables is fixed at 6.

Figure 6.2: Running times, on a log scale, of RATCOP (A3) and Batman (Bm-oct) on loosely
coupled threads. The number of shared variables is fixed at 6.

The running times of the two analyses are given in Fig. 6.2. The graph in 6.2 plots the

running times of the two analyses on a logarithmic scale.

In the benchmarks, with increasing number of threads, RATCOP was upto 5 orders of

magnitude faster than Bm-oct. The rate of increase in running time was almost linear for

RATCOP, while it was almost exponential for Bm-oct. Unlike RATCOP, the analyses in

[59, 60] compute sound facts at every program point, which contributes to the slowdown.

69

6. IMPLEMENTATION AND EXPERIMENTS

70

Chapter 7

Related Work and Discussion

In the first part of the thesis, we presented a framework for developing data-flow analyses for

data race free shared-memory concurrent programs, with a statically fixed number of threads,

and with variables having primitive data types.

There is a rich literature on concurrent data flow analyses and Rinard [65] provides a de-

tailed survey of some of them. We compare some of the relevant ones in this section.

Degree of Inter-thread Communication. Chugh et al [16] automatically lifts a given

sequential analysis to a sound analysis for concurrent programs, using a datarace detector.

However, data-flow facts are not communicated across threads, and this can lose a lot of pre-

cision. The work by Mine [57] allows a greater degree of inter-thread communication. Here,

the overall analysis can be thought of to proceed in rounds of thread-modular analyses. At the

end of each round, every thread generates a set of per-thread “interferences”- for each variable

x, a thread t stores the set of values it writes to x when t was analyzed modularly. In the next

iteration, each thread t′ 6= t takes into account this interference information from t, whenever

it reads x. This, in turn, generates more interferences for t′, and the process continues till

fixpoint. Thus, the inter-thread communication is flow insensitive. Unlike our semantics, this

analysis is unable to infer relational properties between variables. Mine [59] presents an ab-

stract interpretation formulation of the rely-guarantee proof paradigm [48, 88], and allows one

to derive analyses with varying degrees of inter-thread flow sensitivity. In particular, the work

in [57] is shown to be an abstraction of the semantics in [59]. The semantics in [59] involves a

nested fixed-point computation, compared to our single fixed-point formulation. The resulting

analysis aims to be sound at all program points (e.g, in Fig. 1.2 the value of y at line 9 in

t2), due to which many more interferences will have to be propagated than we do, leading to a

71

7. RELATED WORK AND DISCUSSION

less efficient analysis. The times clocked by Batman, in comparison to RATCOP, is testament

to this. [59] attempts to retrieve some degree of efficiency by computing “lock invariants”,

which are essentially summaries of each critical section. However, to make use of this, the pro-

gram must be well-synchronized- every access of a shared variable must be protected by a lock,

which is a stronger requirement than data race freedom. Moreover, for certain programs, our

abstract analyses are more precise. Fig. 7.1 shows a program which is race free, even though

the conflicting accesses to x in lines 2 and 12 are not protected by a common lock. The “lock

invariants” in [59] would consider these accesses as potentially racy, and would allow the read

at line 12 to observe the write at line 2, thereby being unable to prove the assertion. However,

our analyses would ensure that the read only observes the write at line 11, and is able to prove

the assertion. [33] presents an operational semantics for concurrent programs, parameterized

by a relation. It makes additional assumptions about code regions which are unsynchronized

(allowing only read-only shared variables and local variables in such regions). Moreover, it too

computes sound facts at every point, resulting in less efficient abstractions. In this sense, De et

al [22] strikes a sweet spot: by leveraging the race freedom assumption, the analysis restricts

data flow facts to synchronization points alone, thereby gaining efficiency. However, this work

cannot compute relational information either, being based on a cartesian value-set domain.

Data Structure of Program Representation. The methods described in [25, 39, 22]

present concurrent data flow algorithms by building specialized concurrent flow graphs. How-

ever, the class of analyses they address are restricted – [25] handles properties expressible as

Quantified Regular Expressions, [39] handles reaching definitions, while [22] only handles value-

set analyses. While our analyses also makes use of the sync-CFG data structure of [22], the

L-DRF and R-DRF semantics allows us to use it in conjunction with much more expressive

abstract domains. In contrast to our approach, the techniques in [30, 32] provide an approach

to verifying properties of concurrent programs using data flow graphs, rather than use control

flow graphs like we do.

Resource Invariants vs. Regions. A traditional approach to analyzing concurrent

programs involves resource invariants associated with every lock (e.g. Gotsman et al [38]).

This approach depends on a locking policy where a thread only accesses global data if it holds a

protecting lock. In contrast, our approach does not require a particular locking policy (e.g., see

Fig. 7.1), and is based on a parameterized notion of data-race-freedom, which allows to encode

locking policies as a particular case. Thus, our new semantics provides greater flexibility to

analysis writers, at the cost of assuming data race freedom. The analysis in [38] also works

in similar spirit as the sync-CFG a selected part of the heap protected by a lock is made

72

Thread1() {
1: acquire(m);
2: x := 1;
3: y := 1;
4: release(m);
5: }

Thread2() {
6: while(p != 1) {
7: acquire(m);
8: p := y;
9: release(m);
10: }
11: x := 2;
12: p := x;
13: assert(p != 1);
14: }

Figure 7.1: Example demonstrating that a program can be DRF, when when the accesses of a
global variable (in this case, the write and read of x at lines 11 and 12 respectively) are not
directly guarded by any lock.

accessible to a thread only when it acquires the lock. In contrast, the synchronization edges

in a sync-CFG propagates the entire data flow fact. The locking policy employed by [38] is

stronger than the notion of race freedom, and the class of programs the analysis can handle is

a subset of what we handle in this work.

Region Races. Our notion of region races is inspired by the notion of high-level data races

[8]. The concept of splitting the state space into regions was earlier used in [55], which used

these regions to perform shape analysis for concurrent programs. However, that algorithm still

performs a full interleaving analysis which results in poor scalability. The notion of variable

packing [10] is similar to our notion of data regions. However, variable packs constitute a purely

syntactic grouping of variables, while regions are semantic in nature. A syntactic block may

not access all variables in a semantic region, which would result in a region partitioning more

refined than what the programmer has in mind, which would result in decreased precision.

As future work, we would like to evaluate the performance of our tool when equipped with

disjunctive relational domains. In this work, we do not consider dynamically allocated memory,

and extending the L-DRF semantics to account for the heap memory is interesting future work.

Abstractions of such a semantics could potentially yield efficient shape analyses for race free

concurrent programs.

73

7. RELATED WORK AND DISCUSSION

74

Part II

Detecting all High-Level Data Races in

an RTOS Kernel

75

Chapter 8

The architecture of FreeRTOS

In this part of the thesis, we address the problem of detecting atomicity violations in the library

functions of an RTOS kernel. We introduce the notion of a high-level data race, which occurs

when the execution of an application interleaves instructions corresponding to user-annotated

critical accesses of shared-memory data structures. Such races are a necessary condition for

atomicity violations. We propose a technique for detecting all high-level data races in a system

library like the kernel API of a real-time operating system (RTOS) that relies on flag-based

scheduling and synchronization. Our methodology is based on model-checking, but relies on a

meta-argument to bound the number of concurrent tasks needed to orchestrate a race.

We describe our approach in the context of FreeRTOS, a popular real-time operating system

in the embedded systems domain. FreeRTOS is representative of other operating systems in its

class. Thus, techniques we outline here generalize to other concurrent libraries which permit

interrupts and make use of flags to control synchronization and scheduling.

In this chapter, we provide an overview of the architecture of FreeRTOS. We highlight the

key data structures and API functions using a small application, and snippets from the actual

library functions.

8.1 Overview of FreeRTOS

FreeRTOS [64] is a real-time kernel meant for use in embedded applications that run on micro-

controllers with small to mid-sized memory.

It allows an application to organise itself into multiple independent tasks (or threads) that

will be executed according to a priority-based preemptive scheduling policy. It is implemented

This work was done in collaboration with Arun Kumar and Deepak D’Souza, at the Indian Institute of
Science.

77

8. THE ARCHITECTURE OF FREERTOS

int main(void) {
QueueHandle q;
q = QueueCreate(1, sizeof(int));
TaskCreate(prod, "Prod", 2, ...);
TaskCreate(cons, "Cons", 1, ...);
StartScheduler();

}

void prod(void* params) {
for(;;) {

QueueSend(q,...);
TaskDelay(2);

}
}

void cons(void* params) {
for(;;) {

QueueReceive(q,...);
}

}

Prod

Cons

Idle

Time (tick interrupts)
t2 t3t1

Figure 8.1: An example FreeRTOS application and its execution

as a library of functions (or an API) written mostly in C (some parts of the OS are written

at assembly level), that an application programmer can include with their code and invoke as

functions. The API provides the programmer the means to create and schedule tasks, commu-

nicate between tasks (via message queues, semaphores, etc), and carry out time-constrained

blocking of tasks.

Fig. 8.1 shows a simple FreeRTOS application. In main the application first creates a queue

with the capacity to hold a single message of type int. It then creates two tasks called “Prod”

and “Cons” of priority 2 and 1, respectively, using the TaskCreate API function, which adds

these two tasks to the “Ready” list. The FreeRTOS scheduler is then started by the call to

StartScheduler. The scheduler schedules the Prod task first, it being the highest priority

ready task. Prod sends a message to the queue, and then asks to be delayed for two time

units. This results in Prod being put into the “Delayed” list. The next available task, Cons,

is run next. It dequeues the message from the queue, but is blocked when it tries to dequeue

again. The scheduler now makes the Idle task run. A timer interrupt now occurs, causing an

Interrupt Service Routine (ISR) called IncrementTick to be run. This routine increments

the current tick count, and checks the delayed list to see if any tasks need to be woken up.

There are none, so the Idle task resumes execution. However when the second tick interrupt

occurs, the ISR finds that the Prod task needs to be woken up, and moves it to the ready

78

list. As Prod is now the highest priority ready task, it executes next. This cycle repeats, ad

infinitum.

The FreeRTOS kernel maintains a bunch of data-structures, variables and flags, some of

which are depicted in Fig. 8.2. Tasks that are ready to run are kept in the ReadyTasksList,

an array which maintains—for each priority—a pointer to a linked list of tasks of that priority

that are ready to run. When a running task delays itself, it is moved from the ReadyTasksList

to the DelayedTaskList, with an appropriate time-to-awake value. User-defined queues, like

q in the example application, are maintained by the kernel as a chunk of memory to store the

data (shown as QueueData in the figure), along with an integer variable MessagesWaiting

that records the number of messages in the queue, and two associated lists WaitingToSend

and WaitingToReceive that, respectively, contain the tasks that are blocked on sending to

and receiving from the queue.

Even though FreeRTOS applications typically run on a single processor (or a single core of

a multi-core processor), the kernel API functions can interact with each other in an interleaved

manner. While a function invoked by the current task is running, there could be an interrupt

due to which an ISR runs, which in turn may either invoke another API function, or unblock

a higher priority task which goes on to execute another API function. The FreeRTOS API

functions thus need to use some kind of synchronization mechanism to ensure “exclusive”

access to the kernel data-structures. They do so in a variety of ways, to balance the trade-off

between securing fully exclusive access and not losing interrupts. The strongest exclusion is

achieved in a “critical section,” where an API function disables interrupts to the processor,

completes its critical accesses, and then re-enables interrupts. During such a critical section no

preemption (and hence no interleaving) is possible. The second kind of exclusion is achieved by

“suspending” the scheduler. This is done by setting the kernel flag SchedulerSuspended

to 1. While the scheduler is suspended (i.e. this flag is set), no other task will be scheduled

to run; however, unlike in a critical section, interrupts can still occur and an ISR can execute

some designated API functions (called “fromISR” functions which are distinguished from the

other “task” functions). The implicit protocol is that these functions will check whether the

SchedulerSuspended flag is set, and if so they will not access certain data-structures like

the ReadyTasksList, but move tasks when required to the PendingReadyList instead.

Fig. 8.2 shows some of the structures protected by the SchedulerSuspended flag.

The final synchronization mechanism used in FreeRTOS is a pair of per-user-queue “locks”

(actually flags which also serve as counters) called RxLock and TxLock, that protect the

WaitingToReceive and WaitingToSend lists associated with the queue. When a task

79

8. THE ARCHITECTURE OF FREERTOS

��������������������������

����������������������������

RxLock

TxLock

WaitingToSend

WaitingToReceive

0

1

2

ReadyTasksList

DelayedTaskList

CurrentTCB

TickCount

PendingReadyList

MissedTicks

SchedulerSuspended

User Queue

QueueData

MessagesWaiting

Figure 8.2: Kernel data-structures in FreeRTOS. The data structures within the upper rect-
angle are protected by the SchedulerSuspended flag. RxLock and TxLock protects the
WaitingToSend and WaitingToReceive data structures, respectively.

executes an API function that accesses a user-queue, the function sets these locks (increments

them from their initial value of -1 to 0). Any fromISR function that now runs will now avoid

accessing the waiting lists associated with this queue, and instead increment the corresponding

lock associated with the queue to record the fact that data has been added or removed from

the queue. We would like to iterate once again that RxLock and TxLock are merely counters,

and are not actual locks. When the interrupted function resumes, it will move a task from the

waiting list back to the ready list, for each increment of a lock done by an ISR. These locks

and the lists they protect are also depicted in Fig. 8.2.

Fig. 8.3 shows parts of the implementation of two library functions in the FreeRTOS API.

The QueueSend function is used by a task to enqueue an item in a user-defined queue pxQ.

Lines 3–9 are done with interrupts disabled, and corresponds to the case when there is available

space in the queue: the item is enqueued, a task at the head of WaitingToReceive is

moved to the ReadyTasksList, and the function returns successfully. In lines 14–26, which

corresponds to the case when the queue is full, the function enables interrupts, checks again

that the queue is still full (since after enabling interrupts, an ISR could have removed something

from the queue), and goes on to move itself from the Ready queue to the WaitingToSend list

of pxQ. This whole part is done by first suspending the scheduler and locking pxQ, and finally

unlocking the queue and resuming the scheduler. The call to LockQueue in line 16 increments

both RxLock and TxLock. The call to UnlockQueue in line 21 decrements RxLock as many

times as its value exceeds 0, each time moving a task (if present) from WaitingToSend to

Ready. It does a similar sequence of steps with TxLock. Both these functions first disable

80

int QueueSend(QHandle pxQ, void *ItemToQueue) {
1 // Repeat till successful send
2 DISABLE__INTERRUPTS();
3 if(!QueueFull(pxQ)) { // Queue is not full
4 // Copy data to queue
5 CopyDataToQueue(pxQ, ItemToQueue);
6 if(!empty(pxQ->WaitingToReceive)) {
7 ... // Move task from WaitingToReceive
8 ... // to ReadyTasksList
9 }

10 ENABLE__INTERRUPTS();
11 return PASS;
12 }
13 // Reach here when queue is full
14 ENABLE__INTERRUPTS();
15 ++SchedulerSuspended; // Suspend scheduler
16 LockQueue(pxQ);//Inc Tx(Rx)Lock with ints disabled
17 if(QueueFull(pxQ)) { // Check if queue still full
18 ... // Move current task from ReadyTasksList
19 ... // to WaitingToSend
20 }
21 UnlockQueue(pxQ);//Move tasks from waiting lists
22 // and unlock, with ints disabled
23 --SchedulerSuspended; // Resume scheduler
24 if (...) { // higher priority task woken
25 YIELD();
26 }
}

void IncrementTick() {
1 if(SchedulerSuspended == 0) {
2 ++TickCount;
3 if(TickCount == 0) {
4 ... // swap delayed lists
5 DelayedTaskList = OverflowDelayedTaskList;
6 }
7 ... // Move tasks whose time-to-awake is now,
8 ... // from DelayedTaskList to ReadyTasksList.
9 }

10 else {
11 ++MissedTicks;
12 }
}

Figure 8.3: Excerpts from FreeRTOS functions

interrupts and re-enable them once their job is done. Finally, in lines 24–26, the function checks

to see if it has unblocked a higher priority task, and if so “yields” control to the scheduler.

81

8. THE ARCHITECTURE OF FREERTOS

The second API function in Fig. 8.3 is the IncrementTick function that is called by the

timer interrupt, and which we consider to be in the fromISR category of API functions. If

the scheduler is not suspended, it increments the TickCount counter, and moves tasks in the

DelayedTaskList whose time-to-awake equals the current tick count, to the Ready list. If

the scheduler is suspended, it simply increments the MissedTicks counter.

82

Chapter 9

Atomicity Violations, and High-Level

Data Races

9.1 (S,C) Races

In this chapter we describe our notion of a high-level race in a system library like FreeRTOS.

Essentially a race occurs when two “critical” access paths in two API functions interleave. We

make this notion more precise below.

Consider a system library L. Our notion of a race in L is parameterized by a set S of shared

memory structures maintained by the library, and a set C of “critical accesses” of structures

in S. The set of structures in S is largely determined by the developer’s design for thread-safe

access. We can imagine that the developer has in mind a partitioning of the shared memory

structures into “units” which can be independently accessed: thus, it is safe for two threads to

simultaneously access two distinct units, while it is potentially unsafe for two threads to access

the same unit simultaneously. For instance, in FreeRTOS, the set S could contain shared

variables like SchedulerSuspended, or shared data-structures like ReadyTasksList, or

an entire user-queue. The set of critical accesses C would comprise contiguous blocks of code in

the API functions of L, each of which corresponds to an access of one of these units in S. The

accesses are “critical”, in the sense that they are not meant to interleave with other accesses

to the same structural unit. Each critical access comes with a classification of being a write or

read access to a particular shared structure v in S. For example, we could have the block of

code in lines 17–20 of the QueueSend function in Figure 8.3, reproduced in Figure 9.1, as a

critical write to the user-queue structure, in C.

Finally, we say that a pair of accesses in C are conflicting if they both access the same

83

9. ATOMICITY VIOLATIONS, AND HIGH-LEVEL DATA RACES

17 if(QueueFull(pxQ)) { // Check if queue still full
18 ... // Move current task from ReadyTasksList
19 ... // to WaitingToSend
20 }

Figure 9.1: Extract from the QueueSend function in Figure 8.3. These instructions constitute
a critical write to the user-queue data structure.

structure v in S and at least one is a write access.

An execution of an application program A that uses L—an L-execution for short—is an

interleaving of the execution of the tasks (or threads) it creates. An execution of a task in

turn is a (feasible) sequence of instructions that follows the control-flow graph of its compiled

version. Since these tasks may periodically invoke the functions in L, portions of their execution

will correspond to the critical paths in these functions. We say that an L-execution exhibits

an (S,C) high-level race (or just (S,C)-race for short) on a structure v in S, if it interleaves the

execution paths corresponding to two conflicting critical accesses to v (i.e. the second critical

access begins before the first ends).

When do we say an (S,C)-race is “harmful”? We can use the notion of atomicity violation

from [36] (see also [31]) to capture this notion. Consider an L-execution ρ. Each task in the

application may invoke functions in L along ρ, and some of these invocations may overlap

(or interleave) with invocations of functions of L in other tasks. A linearized version of ρ

follows the same sequence of invocations of the functions in L along ρ, except that overlapping

invocations are re-ordered so that they no longer overlap. We refer the reader to [43] for a

more formal definition of linearizability. We can now say that an L-execution ρ exhibits an

atomicity violation if there is no linearized version of the execution that leaves the shared

memory structures in the same state as ρ. This definition differs slightly from [36] in that we

prefer to use the notion of linearizability rather than serializability.

For a given (S,C), we say that an (S,C)-race is harmful if there is an L-execution that

contains this race, exhibits an atomicity violation, and this race plays a role (possibly along

with other threads) in producing this atomicity violation. Otherwise we say the race is benign.

Finally, we say that a given (S,C) pair is safe for L, if every L-execution that exhibits an

atomicity violation also exhibits an (S,C)-race. We note that we can always obtain a safe

(S,C) by putting all memory structures into a single unit in S and entire method bodies into

C. However this would lead to lots of false positives, and it is thus preferable to have as

finely-granular an (S,C) as possible.

We now proceed to describe our choice of what we believe to be safe choice of S and C for

84

FreeRTOS. Some natural candidates for units in S are the various task lists like ReadyTasksList

and DelayedTaskList. For a user-defined queue, one could treat the entire queue—comprising

QueueData, MessagesWaiting, and the WaitingToSend and WaitingToReceive lists—

as a single unit. However, this view would go against the fact that, by design, a task could

be accessing the WaitingToSend component, while an ISR accesses the QueueData compo-

nent. Hence, we keep each component of a user-defined queue as a separate unit in S. Finally,

we include all shared flags like SchedulerSuspended, pointer variables like CurrentTCB,

and counters and locks like TickCount and xRxLock, in S. Corresponding to this choice of

units in S, we classify, for example, the following blocks of code as critical accesses in C: line 3

of the QueueSend function (Figure 9.2) as a read access of MessagesWaiting, line 5 as a

write to QueueData, line 6 as a read of WaitingToReceive, and lines 7–8 as a write to

both WaitingToReceive and ReadyTasksList.

9.2 Examples of (S,C) races in FreeRTOS

We now give a couple of examples of races with respect to the set of structures S and accesses C

described above. Assume for the sake of illustration, that the QueueSend function did not dis-

able interrupts in line 2. The modified QueueSend function is shown in Figure 9.2. Consider an

execution of the example application in Figure 8.1, reproduced here in Figure 9.2, in which the

Prod task calls the QueueSend function, and begins the critical write to ReadyTasksList.

At this point a timer interrupt comes and causes the IncrementTick ISR to run and execute

the critical write to ReadyTasksList in lines 7–8. This execution would constitute a race

on ReadyTasksList.

As a second example, consider the write access to SchedulerSuspended in the equivalent

of line 15 of the QueueSend function (see Figure 9.2) in QueueReceive, and the read access

of the same variable in line 1 of IncrementTick (an excerpt of IncrementTick is shown

in Figure 9.3).

Then an execution of the example application in Figure 9.2 in which Cons calls the

QueueReceive function when the queue is empty and executes the equivalent of line 15

to suspend the scheduler, during which it is interrupted by the IncrementTick ISR which

goes on to execute line 1. This execution constitutes a race between the QueueReceive and

IncrementTick API functions on the SchedulerSuspended variable.

The race on ReadyTasksList above is an example of a harmful race since it could lead

to the linked list being in an inconsistent state that cannot be produced by any linearization of

the execution. The race on SchedulerSuspended turns out to be benign, essentially due to

85

9. ATOMICITY VIOLATIONS, AND HIGH-LEVEL DATA RACES

int QueueSend(QHandle pxQ, void *ItemToQueue) {
1 // Repeat till successful send
2 // DISABLE__INTERRUPTS();
3 if(!QueueFull(pxQ)) { // Queue is not full
4 // Copy data to queue
5 CopyDataToQueue(pxQ, ItemToQueue);
6 if(!empty(pxQ->WaitingToReceive)) {
7 ... // Move task from WaitingToReceive
8 ... // to ReadyTasksList
9 }

10 // ENABLE__INTERRUPTS();
11 return PASS;
12 }
13 // Reach here when queue is full
14 // ENABLE__INTERRUPTS();
15 ++SchedulerSuspended; // Suspend scheduler
16 LockQueue(pxQ);//Inc Tx(Rx)Lock with ints

disabled
17 if(QueueFull(pxQ)) { // Check if queue still full
18 ... // Move current task from ReadyTasksList
19 ... // to WaitingToSend
20 }
21 UnlockQueue(pxQ);//Move tasks from waiting lists
22 // and unlock, with ints disabled
23 --SchedulerSuspended; // Resume scheduler
24 if (...) { // higher priority task woken
25 YIELD();
26 }
}

int main(void) {
QueueHandle q;
q = QueueCreate(1, sizeof

(int));
TaskCreate(prod, "Prod",

2, ...);
TaskCreate(cons, "Cons",

1, ...);
StartScheduler();

}

void prod(void* params) {
for(;;) {

QueueSend(q,...);
TaskDelay(2);

}
}

void cons(void* params) {
for(;;) {

QueueReceive(q,...);
}

}

Figure 9.2: The code on the left is a version of the QueueSend library function, with the
interrupts disabled at line 2. The code on the right is the example application presented in
Chapter 8.

void IncrementTick() {
1 if(SchedulerSuspended == 0) {

...
6 }
7 ... // Move tasks whose time-to-awake is now,
8 ... // from DelayedTaskList to ReadyTasksList.
9 }

10 else {
11 ++MissedTicks;
12 }
}

Figure 9.3: Excerpt of the IncrementTick function outlined in Figure 8.3.

86

the variable being declared to be volatile (so reads/writes to it are done directly from memory),

and fact that an ISR runs to completion before we can switch back to QueueReceive.

87

9. ATOMICITY VIOLATIONS, AND HIGH-LEVEL DATA RACES

88

Chapter 10

Modelling FreeRTOS in Spin

In this chapter we describe how we model the FreeRTOS API and check for (S,C)-races using

the model-checking tool Spin [44]. Spin’s modeling language Promela can be used to model

finite-state concurrent systems with standard communication and synchronization mechanisms

(like message channels, semaphores, and locks). One can then model-check the system model

to see if it satisfies a given state assertion or LTL property. For more details on Spin we refer

the reader to [44].

10.1 Modeling Mn

Our first aim is to generate a Promela model Mn which captures the possible interleavings of

critical accesses in any FreeRTOS application with at most n tasks. To make this more precise,

consider a FreeRTOS application that—along any execution—creates at most n tasks. We

denote such an application by An. We now define a Promela model Mn that has the following

property (P):

For every execution of An, which exercises the critical accesses within the FreeRTOS

API functions in a certain interleaved manner, there is a corresponding execution

in Mn with a similar manner of interleaving.

For a given n, the Promela model Mn is built as follows. We introduce four semaphores

called task, sch, isr, and schsus to model the possible control switches between processes.

Recall that a (binary) semaphore has two possible states 0 and 1, and blocking operations

up and down which respectively change the state from 0 to 1 and 1 to 0. Initially all the

semaphores are down (i.e. 0) except sch which is 1 to begin with. The semaphores are used to

indicate when a particular API function is enabled. For example when the sch semaphore is

89

10. MODELLING FREERTOS IN SPIN

up, the scheduler process—which first tries to down the sch semaphore—is enabled. Similarly,

the task semaphore controls when a task function is enabled, and the isr semaphore controls

when a fromISR function is enabled. The schsus semaphore is used to ensure that whenever a

task function is interrupted while the scheduler is suspended, control returns to the interrupted

task function only. Figure 10.1 provides a graphical representation of our model of the control

flow between the various components of FreeRTOS: the scheduler, an arbitrary library function,

and an ISR.

ISR

(sched enab)
Interrupt

(sched susp)
Interrupt

Yield

Scheduler

(sched enab) (sched susp)

Task

down(isr)

up(sch)

down(task)

down(schsus)

up(isr)

down(task)

up(sch)

up(isr)

up(task) up(isr) up(schsus)

down(sch)

Figure 10.1: Model of the flow of control between the scheduler, a library function (task), and
an ISR in FreeRTOS.

Each API function is modeled as a Promela function with the same name. We model vari-

ables of FreeRTOS that are critical to maintaining mutual exclusion, like SchedulerSuspended,

RxLock and TxLock. We capture conditionals involving these variables and updates to these

variables faithfully, and abstract the remaining conditionals conservatively to allow control-flow

(non-deterministically) through both true and false branches of the conditional.

For each structure v ∈ S, we introduce a numeric variable called “ v”, which is initialized to

0. For each critical write access to a structure v in an API function F , we add a statement v

90

+= 2 (short for v = v +2) at the beginning of the block, and the statement v -= 2 at

the end of the block, in the Promela version of F . Similarly, for a read access of v we add the

statements v++ and v-- at appropriate points in the function. The possible context-switches

due to an interrupt or yield to the scheduler are captured by up-ing the isr or sch semaphore.

In particular, at any point in a function where an interrupt can occur (i.e. whenever interrupts

are not disabled or an ISR itself is running), we add a call to interrupt() which essentially

up’s the isr semaphore and waits till a down is enabled on the task semaphore. Figure 10.2

is our Promela model for the interrupt invocation.

inline interrupt() {
if
:: SchedulerSuspended==0 ->

up(isr); down(task)
:: SchedulerSuspended==1 ->

up(isr); down(schsus)
:: skip;
fi

}

Figure 10.2: Promela model of an interrupt. If the SchedulerSuspended flag is set, we
ensure that the control returns to the preempted task. Otherwise, after the execution of the
ISR, context may switch to an arbitrary ready task.

The Promela function corresponding to the QueueSend function is shown in Figure 10.3.

Each task inAn is abstracted and conservatively modeled by a single process called taskproc

in Mn, which repeatedly chooses a task API function non-deterministically and calls it. In a

similar way, we model the fromISR API functions, and the isrproc process repeatedly invokes

one of these non-deterministically. The Promela code of model Mn is depicted in Figure 10.6.

Thus, Mn runs one scheduler process, one isrproc process, and n taskproc processes.

Let us define what we consider to be a race in Mn. Let the statements in Mn be s1, . . . , sm.

If statement si is part of the definition of API function F , we write Γ(si) = F . An execution of

Mn is a sequence of these statements that follows the control-flow of the model, and is feasible

in that each statement is enabled in the state in which it is executed. We say an execution ρ

of Mn exhibits a data race on a structure v, involving statements si and sj if (a) si and sj are

both increments of v, (b) at least one increments v by 2, and (c) ρ is of the form π1 · si ·π2 · sj
with the segment π2 not containing the decrement of v corresponding to si. Note that the

value of v along ρ will exceed 2 after sj.

It is not difficult to see that Mn satisfies the property (P) above. Consequently, any race on

91

10. MODELLING FREERTOS IN SPIN

inline QueueSend() {
// do in a loop
interrupt();
// atomically, so no interrupts
_MessagesWaiting++;
_MessagesWaiting--;
if
:: skip ->

// Copy data to queue
_queueData += 2; _queueData -= 2;
// Check if WaitingToReceive is non-empty
_WaitingToReceive++; _WaitingToReceive--;
// Move task from WaitingToReceive to Ready
_WaitingToReceive += 2; _WaitingToReceive -= 2;
_ReadyTasksList += 2; _ReadyTasksList -= 2;

:: skip;
fi
// end of atomic, so interrupts enabled
interrupt();
if
:: ++SchedulerSuspended; interrupt();

LockQueue(); interrupt();
// Move current task from Ready to WaitingToSend
_ReadyTasksList += 2; interrupt(); _ReadyTasksList -= 2;
_WaitingToSend += 2; interrupt(); _WaitingToSend -= 2;
UnlockQueue(); interrupt();
--SchedulerSuspended; // Resume scheduler
if
:: up(sch); down(task); // Yield
:: skip;
fi

:: skip;
fi

}

Figure 10.3: The abstraction of the QueueSend library function in the Promela modeling
language. For each shared data structure x we are interested in modeling, we introduce an
integer variable x. For example, we use queueData above as an abstraction of the data
component of a queue. Reads to x are modeled by an increment of x by 1, followed by a
decrement. Similarly, writes are modeled by an increase of x by 2, followed by a decrease by
2. If, in addition, the accesses are made in a non-atomic section of code, the increment and
decrement operations are interspersed by a call to the interrupt function, to model the fact
that an interrupt invocation may occur while x is being accessed. The Lock and UnLock
functions are described in Figure 10.4 and Figure 10.5 respectively.

a structure v ∈ S in application An will have a corresponding execution in Mn which exhibits

a data race on v. Thus, it follows that by model-checking Mn for the invariant

92

inline LockQueue() {
//Inc Tx(Rx)Lock with ints disabled
_TxLock +=2; TxLock++;
_TxLock -= 2;
_RxLock +=2; RxLock++;
_RxLock -= 2;

}

Figure 10.4: The LockQueue function used in Figure 10.3.

inline UnlockQueue() {
// atomic
do
:: TxLock > 0 -> ... --TxLock;

//Move tasks from
//WaitingToReceive to Ready

:: TxLock = 0 -> break;
od
TxLock = -1; // unlock queue
//end atomic
interrupt();
// atomic
do
:: RxLock > 0 -> ... --RxLock;

//Move tasks from
//WaitingToReceive to Ready

:: RxLock = 0 -> break;
od
RxLock = -1; // unlock queue
//end atomic
interrupt();

}

Figure 10.5: The UnlockQueue function used in Figure 10.3.

((_ReadyTasksList < 3) && (_DelayedTaskList < 3) && ...)

we will find all races that may arise in an n-task application An. We note that there may

be some false positives, due to conservative modeling of conditionals in the API functions, or

because of 3 consecutive read accesses.

10.2 Strategy to identify all high-level races

There are now two hurdles in our path. The first is that we need to model-check Mn for each n,

as it is possible that some races manifest only for certain values of n. Secondly, model-checking

even a single Mn may be prohibitively time-consuming due to the large state-space of these

93

10. MODELLING FREERTOS IN SPIN

proctype scheduler() {
do
:: down(sch);

if
:: SchedulerSuspended==0 -> up(task)
:: SchedulerSuspended==1 -> up(schsus)
:: up(isr)
fi

od
}

proctype taskproc() {
do
:: down(task); QueueSend(); up(sch);
:: ...
:: down(task); TaskDelay(); up(sch);
od

}

proctype isrproc() {
do
:: down(isr); IncrementTick(); up(sch);
:: ...
:: down(isr); QueueSendFromISR(); up(sch);
od

}

init {
run scheduler();
// start n task and 1 ISR process
run taskproc();
...;
run taskproc();
run isrproc();

}

Figure 10.6: Promela model Mn.

models. In fact, as we report in Sec. 12, Spin times out even on M2, after running for several

hours. We propose a way out of this problem, by first proving a meta-claim that any race

between API functions F and G in Mn, will also manifest in a reduced model, MF,G,I , in which

we have a process that runs only F , one that runs only G, another that runs a fromISR function

I, along with the scheduler process, and an ISR process that runs only the IncrementTick

function. We denote this set of reduced models by Mred . We then go on to model-check each

of these reduced models for data races. Though there are now thousands of models to check,

each one model-checks in a few seconds, leading to tractable overall running time.

94

In the next chapter we justify our meta-claim.

95

10. MODELLING FREERTOS IN SPIN

96

Chapter 11

Reduction to Mred

Before we proceed with our reduction claim, we note that this claim may not hold for a general

library. Consider, for example, the library L with three API functions F , G, and H shown

in Fig. 11.1. Suppose the variable x belongs to the set of structures S and the lines 2 and

6 constitute a critical read and write access, respectively, to x. Then the (S,C)-race on x

involving these accesses will never show up in any reduced model in Mred , since we need all

three functions to execute in order to produce this race. Thus, as we do for FreeRTOS below,

any choice regarding the structure of models in Mred , and the argument for its sufficiency, must

be tailored for a given library and the way it has been modeled.

F() {
1: ...
2: read(x);
3: ...
}

G() {
4: ...
5: if(flag)
6: write(x);
}

H() {
7: ...
8: flag = true;
9: ...
}

Figure 11.1: An example library where there is a potential data race between library functions
F and G. However, any execution which causes this data race also needs to execute the library
function H. Thus, a “reduction” to Mred does not suffice for this library.

We now describe the reduction claim for our FreeRTOS model:

Theorem 11.1 Let n ≥ 1, and let ρ be an execution of Mn exhibiting a race involving state-

ments si and sj of Mn. Then there exists a model M ∈ Mred , and an execution ρred of M ,

which also exhibits a race on si and sj.

We denote the set of “fromISR” functions as Lisr . We make use of the following properties

of the concurrency model for our proof.

97

11. REDUCTION TO MRED

• P1. The control flow path taken by any fromISR function f ∈ Lisr is only governed by

the value of the flags SchedulerSuspended, TxLock, and RxLock.

• P2. No f ∈ Lisr modifies the value of SchedulerSuspended.

• P3. For the fromISR functions which do read the flags TxLock, the control flow path

depends on whether TxLock = −1 or TxLock ≥ 0. In particular, while the functions

do distinguish between the cases when TxLock is -1 and non-negative, they do not

distinguish between whether TxLock = 0 or TxLock > 0. A similar property holds for

RxLock.

• P4. If f ∈ Lisr chooses the path guarded by the condition TxLock ≥ 0, then it exits in a

state with TxLock > 0. In other words, the operations within this path strictly increase

TxLock. A similar property holds for RxLock.

• P5. In an execution, if a task function F suspends the scheduler, then it is F which

resumes it. No other task function can execute while the scheduler is suspended.

• P6. LockQueue and UnlockQueue operations are always bundled within a scheduler-

disabled block of code (that is, with SchedulerSuspended = 1). Thus, in an execu-

tion, if a function F invokes the LockQueue operation, then it is F which invokes the

corresponding UnlockQueue.

• P7. All operations within an UnlockQueue are within interrupt-disabled sections, and

hence no preemption is possible. Consequently, no operation within an UnlockQueue

operation can participate in a data-race.

In the proof below, we do away with the scheduler component and allow the ISRs to directly

“up” the api and schsus semaphores. This is just to simplify the argument.

Proof: By the construction of Mn, the execution ρ must be of the form

π1 · up(api) · down(api) · π2 · si · up(isr) · π3 · sk

where si is a statement in an API task function F , and down(api) · π2 · si · up(isr) is the

portion of ρ corresponding to the racy invocation of F . Figure 11.2 provides a diagrammatic

representation of the situation under consideration. We note that si must be part of a task

function, while sk could be part of either a task or fromISR function.

98

GF I J

down(api)

lock

unlock

up(isr)

F I

down(api)

lock

unlock

up(isr)

skip

skip

Figure 11.2: The execution ρ and its reduction ρred .

We consider two top-level cases: the first when sk is in a fromISR function, and the second

when it is in a task function.

Case 1. sk is in a fromISR function I. In this case, the path π3 must be of the form

π′3 · up(isr) · π4 · sk, where π′3 comprises an interleaved sequence of fromISR functions and

task functions, and π4 · sk is an initial path in I, beginning with a down(isr).

We consider two further sub-cases corresponding to whether the SchedulerSuspended

flag is 1 or 0 after the statement si in ρ.

Case 1(a). SchedulerSuspended is 1 after si. In this case, the path π′3 must comprise

a sequence of fromISR functions. This is because the scheduler remains suspended after si in ρ

(only F can resume it, and F never executes after si · up(isr) in ρ), and hence no task API

function can run in this suffix of ρ.

Consider the path π2 that begins in F , contains some interrupting paths that visit other task

or fromISR functions, and ends at si in F . We define an “uninterrupted” version of π2, denoted

unint(π2), to be the path that replaces each interrupt path by a skip statement (note that

this non-deterministic branch exists in each interrupt call). In addition, the portion of π2 that

goes through an UnlockQueue call may have to change: the path through an UnlockQueue

depends on the values of TxLock and RxLock, and these values may have changed by eliding

99

11. REDUCTION TO MRED

the interrupt paths from π2. Nevertheless, there is a path through UnlockQueue enabled for

these new values, and we use these paths to obtain a feasible path unint(π2) through F .

We can now define the reduced path ρred we need as follows (see Fig. 11.2):

ρred = up(api) · down(api) · unint(π2) · si · up(isr) · π4 · sk.

We need to argue that ρred is a valid execution of MF,∗,I (here “∗” stands for an arbitrary

task function). We have already argued that

up(api) · down(api) · unint(π2) · si · up(isr)

is a valid execution of the model. Let the resulting state after this path be u′. It remains to be

shown that the path π4 · sk is a feasible initial path in I, beginning in state u′.

Let us call two states v and w equivalent if they satisfy the following conditions: (a) the

value of the control semaphores are the same (i.e. v(isr) = w(isr), etc), (b) the value

of SchedulerSuspended is the same, (c) v(TxLock) = −1 iff w(TxLock) = −1 and

v(TxLock) ≥ 0 iff w(TxLock) ≥ 0, and (d) similarly for RxLock. By inspection of the con-

ditionals in any fromISR function J in the model, we observe that the set of feasible initial

paths through J , beginning from equivalent states is exactly the same. Let u be the resulting

state after the prefix δ = π1 · up(api) · down(api) · π2 · si · up(isr) of ρ, and let v be the

resulting state after δ · π′3 · up(isr). To argue that π4 · sk is a feasible initial path in I it is

thus sufficient to argue that the states u′ and v are equivalent.

To do this we argue that (a) u′ and u are equivalent, and (b) that u and v are equivalent.

To see (a), clearly the value of the control semaphores are identical in u and u′. Further, the

value of SchedulerSuspended continues to be 1 in u′ as well, as we are only excising paths

from π2 that are “balanced” in terms of setting and unsetting this flag. Finally, if the value

of TxLock was -1 in u, it continues to be -1 in u′ as well, since an UnlockQueue always

resets the flag to -1. If the value of TxLock was 0 or more in u, then we must be between a

LockQueue and its corresponding UnlockQueue. In this case the value of TxLock would

have been set to 0 in u′. A similar argument holds for RxLock as well, and we are done. To

see that the claim (b) holds, we note that only fromISR functions can execute between u and

v, and they always either leave the value of TxLock and RxLock intact, or increment them if

their value was already ≥ 0.

Thus, ρred is a valid execution of MF,∗,I , and it clearly contains a race on si and sk. This

completes the proof of the first case we were considering.

100

Case 1(b). We now consider the case when SchedulerSuspended is 0 after si in ρ. We

have two further possibilities to consider: whether SchedulerSuspended is 0 at the start of

π4 or whether it is 1.

Case 1(b)(i). SchedulerSuspended = 0 after si and at the start of π4. The reduced

path we need is this case is

ρred = up(api) · down(api) · unint(π2) · si · up(isr) · π4 · sk.

We need to prove that this is a valid execution of MF,∗,I . As argued in Case 1, up(api) ·
down(api) ·unint(π2) · si is a valid execution of this model. Let u′ be the resulting state after

executing up(api) ·down(api) · unint(π2) · si ·up(isr), u be the state after executing δ =

π1 ·up(api) ·down(api) ·π2 ·si ·up(isr) and v be the state after executing δ ·π′3 ·up(isr).

Using arguments similar to Case 1, we can conclude that states u and u′ are equivalent. We

now show that u and v are equivalent. Between states u and v, the control semaphores clearly

have the same values. By assumption, the value of SchedulerSuspended is 0 at u and v.

Since LockQueue operations are necessarily performed with SchedulerSuspended = 1,

TxLock = −1 at u. Since SchedulerSuspended = 0 at v (by assumption), we must have

TxLock = −1 at v. A similar set of arguments hold for RxLock. These conditions imply that

u and v are equivalent.

Thus ρred is a valid execution of MF,∗,I and contains a race between si and sk.

Case 1(b)(ii). SchedulerSuspended = 0 after si and at the start of π4. Clearly, this

happens if some task function G executes in π3 which suspends the scheduler, following which

I is invoked.

We sub-divide this case into two further cases, depending on whether TxLock = −1 or

TxLock ≥ 0 prior to π4.

Case 1(b)(ii)(A). If TxLock = −1 just prior to π4, then we consider the reduced path

ρred = down(api) · unint(π2) · si · 〈tick〉 · up(api) · unint(πG) · sj · up(isr) · π4 · sk.

where unint(πG) corresponds to the interrupt-free version of the path taken by the invocation

ofG in ρ prior to π4. Here, sj is the last suspend scheduler operation (SchedulerSuspended++)

prior to π4. We want to prove that ρred is a valid execution of the model MF,G,I . By the prop-

erties of the unint operator and using arguments similar to Case 1, we can show that the

subpath down(api) · unint(π2) · . . . sj · up(isr) is a valid execution of the model. Let u′ be

the resulting state after executing down(api) · unint(π2) · · · · · sj · up(isr). Let u be the

101

11. REDUCTION TO MRED

resulting state in ρ after sj, while v is the state in ρ prior to π4. As before, we attempt to prove

that states u′ and u are equivalent, while u and v are equivalent. Consider first the states u′

and u. Clearly, the value of the control semaphores are the same. By construction, the value

of SchedulerSuspended is 1 after sj in both ρ and ρred . Since LockQueue operations are

performed after suspending the scheduler, TxLock = −1 after sj in both ρ and ρred . A similar

argument holds for RxLock. Thus, u′ and u are equivalent.

Now consider the states u and v. The control semaphores clearly have the same value. From

the structure of ρ, it is clear that SchedulerSuspended = 1 at u and v. By assumption,

TxLock = −1 at v. Since LockQueue operations always come after a suspend scheduler

operation, TxLock = −1 in u. We make similar arguments for RxLock. Thus, states u and v

are equivalent. Consequently, ρred is a valid execution of MF,G,I , and contains a race between

si and sk.

Case 1(b)(ii)(B). If TxLock ≥ 0 prior to π4, then we consider the reduced path

ρred = down(api) · unint(π2) · si · 〈tick〉 · up(api) · unint(πG) · sj · up(isr) · π4 · sk.

where unint(πG) corresponds to the interrupt-free version of the path taken by the invocation

of G in ρ prior to π4. Here, sj is the last LockQueue invocation before π4. Note that since

LockQueue-UnlockQueue operations are only performed with the scheduler suspended, and

since G is the last task function which suspends the scheduler, the last task function which can

execute LockQueue prior to I can only be G. We wish to show that ρred is a valid execution

of MF,G,I .

In a manner similar to the previous case, we can show that the sub-path of ρred till π4 is

a valid execution of the model. We now need to show that π4 · sk is also a valid execution.

Let u′ be the resulting state after executing down(api) · unint(π2) · · · · · sj · up(isr). Let

u be the resulting state in ρ after sj, while v be the state in ρ prior to π4. We will show that

u′ and u are equivalent, as are u and v. Consider first the states u and u′. Clearly, the value

of the control semaphores are the same. Since LockQueue operations are always performed

with the scheduler suspended, SchedulerSuspended = 1 in both u and u′. Since sj is a

LockQueue operation, TxLock = 0 in both u and u′. A similar argument holds for RxLock.

Thus, u and u′ are equivalent. We now consider u and v. The value of the control semaphores

are clearly the same. Since sj is a LockQueue operation, which is necessarily performed

with the scheduler suspended, no other task function can executed between sj and π4. Thus,

SchedulerSuspended = 1 at u and v. Moreover, TxLock = 0 immediately after sj. Since

102

there could be fromISR functions which execute in π′3 which increment TxLock, the value of

TxLock ≥ 0 in v. A similar set of arguments hold for RxLock. Thus, u and v are equivalent.

Consequently, ρred is a valid execution of MF,G,I and contains a race between si and sk.

Case 2. We now consider the case when sk belongs to a task function in ρ. Note that,

in this case, SchedulerSuspended = 0 after si, otherwise a control switch to a different

task function would not be possible. We sub-divide this case into two. One case considers

the situation when sk is not a statement within UnlockQueue (thereby it is always enabled),

while the other considers the situation when sk is a statement within UnlockQueue (and is

thereby guarded by either TxLock > 0 or RxLock > 0.

Case 2(a). sk is not a statement within UnlockQueue. In this case, we consider the

reduced path

ρred = down(api) · unint(π2) · si · 〈tick〉 · down(api) · unint(πG) · sk.

where unint(πG) is the uninterrupted version of the path taken by the racy invocation of the

task function G in ρ. The symbol 〈tick〉 denotes an invocation of the tick interrupt. We prove

that ρred is a valid execution of some MF,G,∗, where ∗ denotes any fromISR function.

By the property of the unint operator, the sub-path down(api) · unint(π2) · si is a valid

execution of the model. Further, since SchedulerSuspended = 0 after si, a tick interrupt

is permitted at this point, and thus a control switch to the task function G is permitted. Again,

by the property of unint , the sub-path down(api) · unint(πG) · sk is a valid execution of the

model. Thus, the concatenation of the sub-paths is a valid execution of any model MF,G,∗ and

contains a race between si and sk.

Case 2(b). sk is a statement within UnlockQueue (thereby guarded by either TxLock > 0

or RxLock > 0). In this case, we consider the reduced path

ρred = down(api) · unint(π2) · si · 〈tick〉 · down(api) · π5 · sk.

We wish to prove that this is a valid execution of MF,G,I , where I is any fromISR function

which increments TxLock. Here, π5 = π6 · sj · π7 · π8, such that unint(πG) = π6 · sj · π8 and π7

is the path taken by I. The LockQueue operation, corresponding to the UnlockQueue to

which sk belongs, must be executed by G itself (since LockQueue−UnlockQueue operations

are always performed with the scheduler suspended). We let sj be this LockQueue operation.

Since interrupts are enabled at sj, I can execute. Moreover, by inspection of conditionals in

any fromISR function J in the model, we observe if J starts in a state with TxLock = 0, it

103

11. REDUCTION TO MRED

exits in a state with TxLock > 0. Thus, the resulting state after π7 has TxLock > 0, and

none of the operations in π8 touch this variable, which implies that the guard condition of sk

is satisfied. Thus, ρred is a valid execution of MF,G,I and contains a race between si and sk. 2

104

Chapter 12

Experimental Evaluation

12.1 Experimental Setup

Of the 69 API functions in FreeRTOS v6.1.1, we model 17 task and 8 fromISR functions. These

25 library functions form the “core” of the FreeRTOS API. The remaining 44 functions are either

defined in terms of these core functions, or they simply invoke the core functions with specific

arguments, or are synchronization constructs. For example, the functions xQueuePeek and

xSemaphoreTake are listed as library functions. However, they are defined in terms of the

core function xQueueGenericReceive, which we do model. Thus, modeling these additional

functions would be redundant: the races would still be in the core library functions which they

invoke.

Our tool-chain is as follows: the user provides a Promela file which models each library

function, as well as a template for the reduced models. Next, a Java program creates the

“reduced” models (2023 of them in this case) from this Promela template. We then verify these

reduced models using Spin. The output of the verification phase is a set of error trails, one

corresponding to each interleaving which results in the violation of an assertion. The trails are

not in a human readable format, so we need to perform a simulation run in Spin using these

trails. The output of the simulation run is a set of human readable error traces. However, the

number of such traces can be large (around 70,870 were generated during our experiments) and

it is infeasible to manually parse them to find the list of races. Instead, we have yet another

Java program which scans through these traces and reports the list of unique racing pairs. By

a racing pair, we mean statements (si, sk) constituting the race, along with the data-structure

v involved (we also indicate a trace exhibiting the race).

While the model and the reduction argument need to be tailor-made for different kernel

105

12. EXPERIMENTAL EVALUATION

APIs, the software component of the tool-chain is fairly straightforward to reuse. Given a

Promela model of some kernel API other than FreeRTOS, where the modeling follows the rules

outlined in Chapter 10 (and the model is shown to be reducible), the tool-chain can be used to

detect races with minimal changes.

An important point to consider here is the guarantees provided by the Spin tool itself.

Spin does not exhaustively search for all possible violations of an assertion [44]. Instead, it is

guaranteed to report at least one counter-example if the property is not satisfied. Hence, we

make use of an iterative strategy. After each iteration, we change the assertion statement to

suppress reporting the detected races again. We do this by associating a counter value with

each critical access path. The tool reports pairs of counter values, which indicate a specific

interleaving of critical access paths. In the next iteration, we enrich the assertion to suppress

error reports involving the set of pairs reported in the earlier iteration, to ensure that fresh

racing pairs are reported. We continue this process until no further assertion violations are

detected by Spin. Thus, by the final iteration, we are guaranteed to have flagged every high-

level data race.

All our experiments were performed on a quad-core Intel Core i7 machine with 32 GB RAM,

running Ubuntu 14.04. We use Spin version 6.4.5 for our experiments.

12.2 Evaluating M2

The verification of M2 on our machine took up memory in excess of 32 GB. As a result, we had

to kill the verification run prematurely. Even on on a more powerful machine with 4 quad-Xeon

processors (16 cores), 128 GB of RAM, running Ubuntu 14.04, the verification run took 39 GB

of RAM, while executing for more than 3 hours, before timing out. The total number of tracked

states was 4.43×108. Using rough calculations, we estimated that the total amount of memory

needed to store the full state space of this model (assuming that the size of a single state is

100 bytes) is around 1 TB. On the contrary, while model-checking the 2023 reduced models,

the RAM usage never exceeded 9 GB.

12.3 Evaluating Mred

Recall that each MF,G,I ∈Mred comprises 5 processes: the first process runs the task function F ,

the second runs the task function G, the third runs the ISR I (excluding the tick interrupt),

the fourth runs the tick interrupt in a loop, while the fifth process runs the scheduler. Since

there are 17 task functions and 7 fromISR functions (excluding the tick), we generate 17×17×
7 = 2023 models. We model check these reduced models in iterations, altering the assertions

106

at the end of each iteration to ensure that the reported races are not flagged again in the next

iteration.

We suppress reporting races on the SchedulerSuspended flag, which by design are

aplenty. We have manually verified (along with discussions with the FreeRTOS developers)

that these races are benign.

In the first iteration, the verification of Mred generated 38 assertion violations. Of these, 10

were false positives, owing to three consecutive read accesses or the conservative modeling of

the conditionals. Among the rest, 16 can be definitely classified as harmful.

In the second iteration, the tool reported 10 assertion violations, all of them being potentially

benign races involving the variable pxCurrentTCB. The cause was an unprotected read of the

variable in the function vTaskResume. As there were several races involving this statement

(it would race with every access, protected or otherwise, of pxCurrentTCB in almost all other

functions), we suppressed races involving this statement. With this change, we performed a

third iteration of the verification process, which resulted in no further assertion violations.

Iteration #Violations F.P. Harmful Benign? Time
1 38 10 16 12 1.5 hr
2 10 - - 10 2.4 hr
3 - - - - 1.84 hr

Figure 12.1: Experimental Evaluation of Mred

The FreeRTOS API is quite carefully written. Despite the complexity of the possible task

interactions, there are not many harmful races. Among the 16 harmful races detected after the

first iteration, most involved the function vQueueDelete, which deletes the queue passed to

it as argument. Several operations are involved as part of the deletion (removal of the queue

from the registry, deallocating the memory assigned to the queue, etc.). Surprisingly, the set

of operations, which forms a critical access path for the queue data-structure, is devoid of any

synchronization. This causes critical access paths of the queue in other functions, for example

xQueueReceiveFromISR (which reads the contents of the queue), to interleave with the

path in vQueueDelete. The race is harmful because functions can potentially observe an

inconsistent (partially deleted) state of the queue, which it would not otherwise observe along

any linearized execution. We reported this bug to the FreeRTOS developers, and they argue

that this is not serious since queue delete operations are rare and are usually performed at the

end of the application’s lifetime.

The other harmful races involve the QueueRegistry data-structure (which is essentially

107

12. EXPERIMENTAL EVALUATION

Table 12.1: Some Sample Detected Races. “H” indicates Harmful races and “PB” indicates
Possibly Benign.

Structure Library Functions Involved Scenario H/PB

xQueueRegistry P1: vQueueAddToRegistry
P2: vQueueUnregisterQueue

While P1 reads the registry, P2
modifies it. Read-write race.

H

userQueue P1: vQueueDelete
P2: xQueueSend

P2 sends data to a queue while
it is being deleted by P1.
Write-write race.

H

uxPriority P1: xTaskCreate
P2: vTaskPrioritySet

P1 checks the value of uxPriority
while it is being set by P2. The result
is never an inconsistent state.

PB

an array), where addition and deletion of items in the QueueRegistry can interleave, thereby

causing a function to observe an inconsistent state of the registry. Some of the sample races

are given in Tab. 12.1.

A summary of the various statistics of the experiments is given in Fig. 12.1. The running

times are reported in hours. All artifacts of this work are available online at

https : //bitbucket.org/suvam/freertos

12.3.1 List of Detected Races

We report the list of all detected races, along with their classification.

108

Table 12.2: List of Harmful Races

Variable Functions Comments

1 xQueueRegistry
vQueueUnregisterQueue (w)
vQueueAddToRegistry (r)

Simultaneous removal and addition
to the registry.

2 xQueueRegistry
vQueueAddToRegistry (w)
vQueueAddToRegistry (r)

Reading the registry while it is being
updated simultaneously.

3 xQueueRegistry
vQueueUnregisterQueue (w)
vQueueAddToRegistry (w)

Simultaneous updates to the registry.

4 xQueueRegistry
vQueueUnregisterQueue (w)
vQueueUnregisterQueue (w)

Simultaneous updates to the registry.

5 userQueue
xQueueReceive (r)
vQueueDelete (w)

Retrieval from a queue while it is being
deleted simultaneously.

6 userQueue
xQueueReceiveFromISR (r)
vQueueDelete (w)

Retrieval from a queue (in ISR) while
it is being deleted simultaneously.

7 userQueue
uxQueueMessagesWaitingFromISR (r)
vQueueDelete (w)

ISR attempts to read the queue while
it is being deleted simultaneously.

8 userQueue
vQueueDelete (w)
vQueueAddToRegistry (r)

Reading components of a queue while
the queue is being deleted
simultaneously.

9 userQueue
vQueueDelete (w)
vQueueUnregisterQueue (r)

Reading components of a queue while
the queue is being deleted
simultaneously.

10 userQueue
xQueueIsQueueFullFromISR (r)
vQueueDelete (w)

Reading components of a queue while
the queue is being deleted
simultaneously.

11 userQueue
xQueueSendFromISR (r)
vQueueDelete (w)

Reading components of a queue while
the queue is being deleted
simultaneously.

12 userQueue
xQueueIsQueueEmptyFromISR (r)
vQueueDelete (w)

Reading components of a queue while
the queue is being deleted
simultaneously.

13 userQueue
xQueueSend (r)
vQueueDelete (w)

Reading components of a queue while
the queue is being deleted
simultaneously.

14 userQueue
uxQueueMessagesWaiting (r)
vQueueDelete (w)

Reading components of a queue while
the queue is being deleted
simultaneously.

15 userQueue
xQueueIsQueueFullFromISR (r)
vQueueDelete (w)

Reading components of a queue while
the queue is being deleted
simultaneously.

16 pxCurrentTCB
xTaskCreate (w)
vTaskResume (r)

Simultaneous access to pxCurrentTCB.

109

12. EXPERIMENTAL EVALUATION

Table 12.3: List of Potentially Benign Races

Variable Functions Comments

1 userQueue
xQueueReceiveFromISR (w)
vQueueAddToRegistry (r)

The shared queue component
is not modified in either function.

2 userQueue
xQueueSendFromISR (w)
vQueueAddToRegistry (r)

The shared queue component
is not modified in either function.

3 userQueue
xQueueSend (w)
vQueueAddToRegistry (r)

The shared queue component
is not modified in either function.

4 userQueue
xQueueSend (w)
vQueueUnregisterQueue (r)

Does not lead to an inconsistent state.

5 userQueue
xQueueReceiveFromISR (w)
vQueueUnregisterQueue (r)

Does not lead to an inconsistent state.

6 userQueue
xQueueReceive (w)
vQueueUnregisterQueue (r)

Does not lead to an inconsistent state.

7 userQueue
xQueueReceive (w)
vQueueAddToRegistry (r)

Does not lead to an inconsistent state.

8 pxCurrentTCB
vTaskSwitchContextFromISR (w)
vTaskResume (r)

Does not lead to an inconsistent state.

9 pxCurrentTCB
vTaskSwitchContextFromISR (w)
xTaskCreate (r)

Does not lead to an inconsistent state.

10 pxCurrentTCB
xTaskCreate (w)
vTaskResume (r)

Does not lead to an inconsistent state.

11 uxCurrent-NumberOfTasks
xTaskCreate (w)
uxTaskGetNumberOfTasks (r)

Does not lead to an inconsistent state.

12 uxPriority
vTaskPrioritySet (w)
xTaskCreate (r)

Causes an extra yield.

13 pxCurrentTCB
xPendingReadyList (r)
vTaskDelay (r)
vTaskDelay (r)

False Positive

14 pxCurrentTCB
xQueueReceiveFromISR (r)
vTaskDelayUntil (r)
vTaskResume (r)

False Positive

15 pxCurrentTCB
vTaskSwitchContextFromISR (w)
vTaskResume (r)

Does not lead to an inconsistent state.

110

Chapter 13

Related Work and Discussion

Along with work on detecting high-level races and atomicity violations, we also consider work

on detecting classical (location-based) races as some of these techniques could be adapted for

high-level races as well. We group the work into three categories below and discuss them in

relation to our work. The table alongside summarizes the applicability of earlier approaches to

our problem setting.

Dynamic analysis based approaches. Artho et al [7] coined the term “high-level data

race” and gave an informal definition of it in terms of accessing a set of shared variables (what

we call a unit in S) “atomically.” They define a notion of a thread’s “view” of the set of

shared variables, and flag potential races whenever two threads have inconsistent views. They

then provide a lock-set based algorithm, for detecting view inconsistencies dynamically along

an execution. Among the techniques for detecting atomicity violations, Atomizer [34] uses the

notion of left/right moving actions, SVD [87] uses atomic regions as subgraphs of the dynamic

PDG, AVIO [54] uses interleaving accesses, and [85] uses a notion of trace-equivalence; to check

if a given execution exhibits an atomicity violation. Techniques for dynamically detecting

classical data races use locksets computed along an execution (for example [72, 15]), or use

the happens-before ordering (for example [24, 35]), to detect races. None of these techniques

apply directly to the kind of concurrency and synchronization model of FreeRTOS (there are no

explicit locks, and no immediate analogue of the happens-before relation). Most importantly,

by design these techniques explore only a part of the execution space and hence cannot detect

all races.

Static analysis based approaches. von Praun and Gross [81] and Pessanha et al [23]

extend the view-based approach of [7] to carry out a static analysis to detect high-level races.

The notion of views could be used to obtain an annotation of critical accesses (an S and C

111

13. RELATED WORK AND DISCUSSION

in our setting) for methods in a library. However definition of views are lock-based and it is

not clear what is the corresponding notion in our setting, and whether it would correspond

intuitively to what we need.

Flannegan and Qadeer [36] give a type system based static analysis for proving atomicity of

methods (i.e. the method’s actions can be serialized with respect to interleavings with actions

of another thread). The actions of a method are typed as left/right-movers and the analysis

soundly infers methods to be atomic. Wang and Stoller [85] extend this type system for lock-

free synchronization. In our setting, the notion of left/right-movers is not immediate, and such

an approach will likely have a large number of false positives. Static approaches for classical

race detection (e.g. [76, 29, 82]) are typically based on a lockset-based data-flow analysis, where

the analysis keeps track of the set of locks that are “must” held at each access to a location and

reports a race if two conflicting accesses hold disjoint locks. In [1] the locksets are built into a

type system which associates a lock with each field declaration. All the approaches above can

handle libraries and can detect all races in principle, but in practice are too imprecise (lots of

false positives) and often use unsound filters (for example [23, 82]) that improve precision at

the expense of missing real races.

Schwarz et al [74, 75] provide a precise data-flow analysis for checking races in FreeRTOS-

like applications that handles flag-based synchronization and interrupt-driven scheduling. The

technique is capable of detecting all races, but is applicable only to a given application rather

than a library.

Model-Checking approaches. In [4] Alur et al study the problem of deciding whether

a finite-state model satisfies properties like serializability and linearizability. This approach is

attractive as in principle it could be used to verify freedom from atomicity violations. How-

ever, the number of threads need to be bounded (hence they cannot handle libraries) and the

running time is prohibitive (exponential in number of transitions for serializability, and doubly-

exponential in number of threads for linearizability). Farzan and Madhusudan [31] consider

a stronger notion of serializability called “conflict serializability” and give a monitoring algo-

rithm to detect whether a given execution is conflict-serializable or not. This also leads to a

model-checking algorithm for conflict-serializability based atomicity violations. Again, this is

applicable only to applications rather than libraries.

Several researchers have used model-checking tools like Slam, Blast, and Spin to precisely

model various kinds of control-flow and synchronization mechanisms and detect errors exhaus-

tively [42, 26, 40, 41, 90]. All these approaches are for specific application programs rather than

libraries. Chandrasekharan et al [14] follow a similar approach to ours for verifying thread-safety

112

FreeRTOS-like Handles Can Detect
Earlier Work Concurrency Libraries all races
[7], [34], [87], [54], [85], [63], [15], [72], [24], [35], [90] No No No
[76], [29], [82], [81], [23], [36], [85] [1], [14] No Yes Yes
[4], [31], [42], [49] No No Yes
[74],[75] Yes No Yes

Figure 13.1: Applicability of earlier work to our setting.

of a multi-core version of FreeRTOS. However, the library there uses explicit locks and a stan-

dard notion of control-flow between threads. Further, they use a model which is the equivalent

of M2, which does not scale in our setting.

113

13. RELATED WORK AND DISCUSSION

114

Chapter 14

Concluding Remarks

In this thesis, we investigate two different problems in two different types of concurrent systems.

The first problem we address is that of devising efficient static analyses for the class of multi-

threaded shared-variable programs. This part of the thesis leverages the abstract interpretation

framework [19]. Our starting point is a novel thread-local semantics for race free programs,

which we call L-DRF. Abstract analyses derived from L-DRF make use of the sync-CFG

representation of the program, which was first introduced in [22]. The resulting abstractions

are able to maintain relational information everywhere, except at synchronization points. To

further improve precision, we introduce the notion of user-defined regions, which is a semantic

partitioning of the set of program variables. We introduce the notion of region races, which is

stronger than the standard notion of data races. Given a program P which additionally satisfies

region race freedom, we parameterize the L-DRF semantics with the region definitions, which

yields abstract analyses with greater precision. The precision is due to the fact that the inter-

thread join is additionally able to preserve invariants that hold within a region. We instantiate

the abstractions to devise efficient relational analyses for race free concurrent programs, in a

tool called RATCOP. In our experiments, RATCOP was fairly precise while being fast.

Currently, the L-DRF semantics does not handle dynamically allocated memory. If the

L-DRF semantics is equipped with a heap component, then it may be abstracted to efficient

analyses for concurrent programs which manipulate the heap. This would yield efficient pointer

analyses and shape analyses for concurrent programs.

The second problem we address is that of detecting all high-level data races in an real-

time operating system (RTOS) kernel that relies on flag-based scheduling and synchronization.

Such races are good indicators of possible atomicity violations. We describe our methodology

with respect to FreeRTOS, a popular operating system in the embedded systems domain.

115

14. CONCLUDING REMARKS

Since FreeRTOS is quite representative of the class of micro kernel libraries, we expect our

techniques to generalize to other such libraries. The specific modeling and reduction arguments

would of course have to be tailor-made for the given library. Our methodology here is based

on model-checking. We avoid the standard issues related to model-checking (incompleteness

and scalability) by making use of a meta-argument which bounds the concurrent tasks needed

to orchestrate a race. We implemented our techniques in a tool which we used to check for

high-level races in FreeRTOS, and uncovered several harmful defects.

While our arguments, in this work, are tailor-made for the library under consideration (in

this case, FreeRTOS), the assumptions we make are purely syntactic in nature. It is, perhaps,

not unreasonable to assume that such syntactic features exist in libraries in other domains.

Thus, as future work, it would be interesting to apply our methodology to concurrent libraries

like the java.util.concurrent. Moreover, we only handle high-level races in this work. An

interesting extension would be to check for other concurrency defects, like deadlocks.

116

Bibliography

[1] Martin Abadi, Cormac Flanagan, and Stephen N Freund. Types for safe locking: Static

race detection for Java. ACM Transactions on Programming Languages and Systems

(TOPLAS), 28(2):207–255, 2006. 112, 113

[2] Sarita V Adve and Hans-J Boehm. Memory models: a case for rethinking parallel languages

and hardware. Communications of the ACM, 53(8):90–101, 2010. 4

[3] Sarita V Adve and Mark D Hill. Weak orderinga new definition. In ACM SIGARCH

Computer Architecture News, volume 18, pages 2–14. ACM, 1990. 4

[4] Rajeev Alur, Kenneth L. McMillan, and Doron A. Peled. Model-checking of correctness

conditions for concurrent objects. Inf. Comput., 160(1-2):167–188, 2000. doi: 10.1006/

inco.1999.2847. URL http://dx.doi.org/10.1006/inco.1999.2847. 112, 113

[5] Paul Anderson. Fun with Concurrency Problems. http://blogs.grammatech.com/

fun-with-concurrency-problems. [Online; accessed 12-July-2017]. 4

[6] Apple Inc. 3

[7] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. J. Software

Testing, Verification & Reliability, page 2003, 2003. 13, 111, 113

[8] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. In New Tech-

nologies for Information Systems, Proceedings of the 3rd International Workshop on New

Developments in Digital Libraries, NDDL 2003, pages 82–93, 2003. 73

[9] Dirk Beyer. Software verification and verifiable witnesses. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, pages 401–416.

Springer, 2015. 66

117

BIBLIOGRAPHY

[10] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-

toine Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical

software. CoRR, abs/cs/0701193, 2007. URL http://arxiv.org/abs/cs/0701193.

73

[11] Hans-J Boehm and Sarita V Adve. You don’t know jack about shared variables or memory

models. Communications of the ACM, 55:48–54, 2012. 4, 5

[12] Hans-Juergen Boehm. How to miscompile programs with ”benign” data races. In 3rd

USENIX Workshop on Hot Topics in Parallelism, HotPar’11, Berkeley, CA, USA, May

26-27, 2011, 2011. URL https://www.usenix.org/conference/hotpar-11/

how-miscompile-programs-benign-data-races. 4

[13] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer,

Martino Luca, Peter W O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Ro-

driguez. Moving fast with software verification. NFM, 15:3–11, 2015. 3

[14] Prakash Chandrasekaran, K. B. Shibu Kumar, Remish L. Minz, Deepak D’Souza, and

Lomesh Meshram. A multi-core version of FreeRTOS verified for datarace and deadlock

freedom. In Proc. ACM/IEEE Formal Methods and Models for Codesign (MEMOCODE),

pages 62–71, 2014. doi: 10.1109/MEMCOD.2014.6961844. URL http://dx.doi.org/

10.1109/MEMCOD.2014.6961844. 112, 113

[15] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and

Manu Sridharan. Efficient and precise datarace detection for multithreaded object-oriented

programs. In Proc. ACM SIGPLAN Programming Languages Design and Implementation

(PLDI), pages 258–269, New York, NY, USA, 2002. ACM. ISBN 1-58113-463-0. doi: 10.

1145/512529.512560. URL http://doi.acm.org/10.1145/512529.512560. 111,

113

[16] Ravi Chugh, Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Dataflow analysis for

concurrent programs using datarace detection. In Proceedings of the ACM SIGPLAN

2008 Conference on Programming Language Design and Implementation, Tucson, AZ,

USA, June 7-13, 2008, pages 316–326, 2008. doi: 10.1145/1375581.1375620. URL http:

//doi.acm.org/10.1145/1375581.1375620. 71

[17] Ravi Chugh, Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Dataflow analysis for

concurrent programs using datarace detection. In Proceedings of the ACM SIGPLAN

118

BIBLIOGRAPHY

2008 Conference on Programming Language Design and Implementation, Tucson, AZ,

USA, June 7-13, 2008, pages 316–326, 2008. doi: 10.1145/1375581.1375620. URL http:

//doi.acm.org/10.1145/1375581.1375620. 4

[18] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of pro-

grams. In Proceedings of the 2nd International Symposium on Programming, Paris, France.

Dunod, 1976. 10

[19] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proceedings of

the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

pages 238–252. ACM, 1977. 3, 5, 50, 51, 115

[20] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on

Principles of Programming Languages, pages 84–96. ACM, 1978. 10

[21] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David

Monniaux, and Xavier Rival. The astreé analyzer. In Programming Languages and Sys-

tems, 14th European Symposium on Programming,ESOP 2005, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK,

April 4-8, 2005, Proceedings, pages 21–30, 2005. doi: 10.1007/978-3-540-31987-0 3. URL

https://doi.org/10.1007/978-3-540-31987-0_3. 3

[22] Arnab De, Deepak D’Souza, and Rupesh Nasre. Dataflow analysis for datarace-free pro-

grams. In Programming Languages and Systems - 20th European Symposium on Program-

ming, ESOP 2011, pages 196–215, 2011. iii, xi, 4, 5, 7, 8, 10, 49, 50, 55, 58, 65, 66, 68, 72,

115

[23] Ricardo J. Dias, Vasco Pessanha, and João Lourenço. Precise detection of atomicity

violations. In Hardware and Software: Verification and Testing - 8th International Haifa

Verification Conference, (HVC), pages 8–23, 2012. doi: 10.1007/978-3-642-39611-3 8.

URL http://dx.doi.org/10.1007/978-3-642-39611-3_8. 111, 112, 113

[24] Anne Dinning and Edith Schonberg. Detecting access anomalies in programs with critical

sections. In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, PADD,

pages 85–96. ACM, 1991. ISBN 0-89791-457-0. doi: 10.1145/122759.122767. URL http:

//doi.acm.org/10.1145/122759.122767. 111, 113

119

BIBLIOGRAPHY

[25] Matthew B. Dwyer and Lori A. Clarke. Data flow analysis for verifying properties

of concurrent programs. In SIGSOFT ’94, Proceedings of the Second ACM SIGSOFT

Symposium on Foundations of Software Engineering, New Orleans, Louisiana, USA,

December 6-9, 1994, pages 62–75, 1994. doi: 10.1145/193173.195295. URL http:

//doi.acm.org/10.1145/193173.195295. 72

[26] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Precise race detection and efficient model

checking using locksets. Technical Report MSR-TR-2005-118, Microsoft Research, 2005.

112

[27] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-aware

java runtime. In ACM SIGPLAN Notices, volume 42, pages 245–255. ACM, 2007. 3

[28] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded scheduling. In Pro-

ceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 411–422, 2011.

doi: 10.1145/1926385.1926432. URL http://doi.acm.org/10.1145/1926385.

1926432. 1, 2

[29] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of race conditions and

deadlocks. SIGOPS Oper. Syst. Rev., 37(5):237–252, October 2003. ISSN 0163-5980. doi:

10.1145/1165389.945468. URL http://doi.acm.org/10.1145/1165389.945468.

13, 112, 113

[30] Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent pro-

grams by modular reasoning about data and control. In Proceedings of the 39th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 297–

308, 2012. doi: 10.1145/2103656.2103693. URL http://doi.acm.org/10.1145/

2103656.2103693. 72

[31] Azadeh Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs. In Proc.

Computer Aided Verification (CAV), pages 52–65, 2008. doi: 10.1007/978-3-540-70545-1 8.

URL http://dx.doi.org/10.1007/978-3-540-70545-1_8. 84, 112, 113

[32] Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Inductive data flow graphs. In

The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 129–142, 2013. doi: 10.1145/2429069.2429086. URL http://doi.

acm.org/10.1145/2429069.2429086. 72

120

BIBLIOGRAPHY

[33] Rodrigo Ferreira, Xinyu Feng, and Zhong Shao. Parameterized memory models and concur-

rent separation logic. In European Symposium on Programming, pages 267–286. Springer,

2010. 72

[34] Cormac Flanagan and Stephen N. Freund. Atomizer: A dynamic atomicity checker for

multithreaded programs. Sci. Comput. Program., 71(2):89–109, 2008. doi: 10.1016/j.scico.

2007.12.001. URL http://dx.doi.org/10.1016/j.scico.2007.12.001. 3, 111,

113

[35] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise dynamic race

detection. In Proc. ACM SIGPLAN PLDI, pages 121–133. ACM, 2009. ISBN 978-1-

60558-392-1. doi: 10.1145/1542476.1542490. URL http://doi.acm.org/10.1145/

1542476.1542490. 3, 111, 113

[36] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Proc. ACM

SIGPLAN Programming Language Design and Implementation (PLDI), pages 338–349,

2003. doi: 10.1145/781131.781169. URL http://doi.acm.org/10.1145/781131.

781169. 12, 84, 112, 113

[37] Patrice Godefroid. Model checking for programming languages using verisoft. In Con-

ference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, Papers Presented at the Symposium, Paris, France,

15-17 January 1997, pages 174–186, 1997. doi: 10.1145/263699.263717. URL http:

//doi.acm.org/10.1145/263699.263717. 1

[38] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular shape

analysis. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Lan-

guage Design and Implementation, pages 266–277, 2007. doi: 10.1145/1250734.1250765.

URL http://doi.acm.org/10.1145/1250734.1250765. 72, 73

[39] Dirk Grunwald and Harini Srinivasan. Data flow equations for explicitly parallel programs.

In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles & Practice of

Parallel Programming (PPOPP), pages 159–168, 1993. doi: 10.1145/155332.155349. URL

http://doi.acm.org/10.1145/155332.155349. 72

[40] Klaus Havelund and Jens U. Skakkebæk. Applying Model Checking in Java Verification.

In Proc. Theoretical and Practical Aspects of SPIN Model Checking, volume 1680, pages

216–231. Springer, 1999. 112

121

BIBLIOGRAPHY

[41] Klaus Havelund, Michael R. Lowry, and John Penix. Formal analysis of a space-craft

controller using SPIN. IEEE Trans. Software Eng., 27(8):749–765, 2001. doi: 10.1109/32.

940728. URL http://dx.doi.org/10.1109/32.940728. 112

[42] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking by context

inference. In Proc. ACM SIGPLAN Programming Language Design and Implementation

(PLDI), pages 1–13, 2004. doi: 10.1145/996841.996844. URL http://doi.acm.org/

10.1145/996841.996844. 112, 113

[43] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for

concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. 84

[44] Gerard J. Holzmann. The model checker spin. IEEE Trans. Software Engineering, 23:

279–295, 1997. 2, 89, 106

[45] Bertrand Jeannet. Some experience on the software engineering of abstract interpretation

tools. Electronic Notes in Theoretical Computer Science, 267(2):29–42, 2010. 69

[46] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains

for static analysis. In International Conference on Computer Aided Verification, pages

661–667. Springer, 2009. 65

[47] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput. Surv., 41

(4):21:1–21:54, 2009. doi: 10.1145/1592434.1592438. URL http://doi.acm.org/10.

1145/1592434.1592438. 2

[48] Cliff B. Jones. Developing methods for computer programs including a notion of inter-

ference. PhD thesis, University of Oxford, UK, 1981. URL http://ethos.bl.uk/

OrderDetails.do?uin=uk.bl.ethos.259064. 71

[49] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data race detection

for concurrent programs with asynchronous calls. In ACM SIGSOFT FSE, pages 13–22.

ACM, 2009. 113

[50] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM, 21:558–565, July 1978. ISSN 0001-0782. doi: 10.1145/359545.359563. URL http:

//doi.acm.org/10.1145/359545.359563. 26

122

BIBLIOGRAPHY

[51] Leslie Lamport. How to make a multiprocessor computer that correctly executes multi-

process progranm. IEEE transactions on computers, (9):690–691, 1979. 6

[52] Tong Li, Carla Schlatter Ellis, Alvin R. Lebeck, and Daniel J. Sorin. Pulse: A dynamic

deadlock detection mechanism using speculative execution. In Proceedings of the 2005

USENIX Annual Technical Conference, April 10-15, 2005, Anaheim, CA, USA, pages 31–

44, 2005. URL http://www.usenix.org/events/usenix05/tech/general/

li.html. 3

[53] LLVM Project. 3

[54] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: detecting atomicity vio-

lations via access interleaving invariants. In Proc. Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 37–48, 2006. doi: 10.1145/1168857.

1168864. URL http://doi.acm.org/10.1145/1168857.1168864. 111, 113

[55] Roman Manevich, Tal Lev-Ami, Mooly Sagiv, Ganesan Ramalingam, and Josh Berdine.

Heap decomposition for concurrent shape analysis. In Static Analysis, 15th International

Symposium, SAS, pages 363–377, 2008. doi: 10.1007/978-3-540-69166-2 24. URL https:

//doi.org/10.1007/978-3-540-69166-2_24. 73

[56] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In Proceed-

ings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’05, pages 378–391, New York, NY, USA, 2005. ACM. ISBN 1-58113-830-

X. doi: 10.1145/1040305.1040336. URL http://doi.acm.org/10.1145/1040305.

1040336. 4

[57] Antoine Miné. Static analysis of run-time errors in embedded real-time parallel C programs.

Logical Methods in Computer Science, 8(1), 2012. doi: 10.2168/LMCS-8(1:26)2012. URL

https://doi.org/10.2168/LMCS-8(1:26)2012. 71

[58] Antoine Miné. Static analysis by abstract interpretation of concurrent programs. PhD

thesis, Ecole Normale Supérieure de Paris-ENS Paris, 2013. 66, 67

[59] Antoine Miné. Relational thread-modular static value analysis by abstract interpretation.

In Verification, Model Checking, and Abstract Interpretation, pages 39–58. Springer, 2014.

54, 68, 69, 71, 72

123

BIBLIOGRAPHY

[60] Raphaël Monat and Antoine Miné. Precise thread-modular abstract interpretation of

concurrent programs using relational interference abstractions. In International Conference

on Verification, Model Checking, and Abstract Interpretation, pages 386–404. Springer,

2017. 7, 68, 69

[61] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing

of multithreaded programs. In Proceedings of the ACM SIGPLAN 2007 Conference on

Programming Language Design and Implementation, San Diego, California, USA, June

10-13, 2007, pages 446–455, 2007. doi: 10.1145/1250734.1250785. URL http://doi.

acm.org/10.1145/1250734.1250785. 2

[62] Mayur Naik. Chord: A Program Analysis Platform for Java. http://www.cis.upenn.

edu/˜mhnaik/chord.html. Accessed: 2017-03-27. 65, 66

[63] Shaz Qadeer and Dingha Wu. KISS: keep it simple and sequential. In Proc. ACM

SIGPLAN Programming Languages Design and Implementaion (PLDI), pages 14–24,

2004. doi: 10.1145/996841.996845. URL http://doi.acm.org/10.1145/996841.

996845. 113

[64] Real Time Engineers Ltd. The FreeRTOS Real Time Operating System, 2014. URL

www.freertos.org. 13, 77

[65] Martin C. Rinard. Analysis of multithreaded programs. In Static Analysis, 8th In-

ternational Symposium, SAS, pages 1–19, 2001. doi: 10.1007/3-540-47764-0 1. URL

https://doi.org/10.1007/3-540-47764-0_1. 71

[66] Malavika Samak and Murali Krishna Ramanathan. Trace driven dynamic deadlock de-

tection and reproduction. In ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’14, Orlando, FL, USA, February 15-19, 2014, pages

29–42, 2014. doi: 10.1145/2555243.2555262. URL http://doi.acm.org/10.1145/

2555243.2555262. 3

[67] Malavika Samak and Murali Krishna Ramanathan. Omen+: a precise dynamic deadlock

detector for multithreaded java libraries. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong,

China, November 16 - 22, 2014, pages 735–738, 2014. doi: 10.1145/2635868.2661670. URL

http://doi.acm.org/10.1145/2635868.2661670. 3

124

BIBLIOGRAPHY

[68] Malavika Samak and Murali Krishna Ramanathan. Omen: a tool for synthesizing

tests for deadlock detection. In Conference on Systems, Programming, and Applica-

tions: Software for Humanity, SPLASH ’14, Portland, OR, USA, October 20-24, 2014

- Companion Volume, pages 37–38, 2014. doi: 10.1145/2660252.2664663. URL http:

//doi.acm.org/10.1145/2660252.2664663. 3

[69] Malavika Samak and Murali Krishna Ramanathan. Multithreaded test synthesis for dead-

lock detection. In Proceedings of the 2014 ACM International Conference on Object Ori-

ented Programming Systems Languages & Applications, OOPSLA 2014, part of SPLASH

2014, Portland, OR, USA, October 20-24, 2014, pages 473–489, 2014. doi: 10.1145/

2660193.2660238. URL http://doi.acm.org/10.1145/2660193.2660238. 3

[70] Malavika Samak and Murali Krishna Ramanathan. Synthesizing tests for detecting atom-

icity violations. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, pages 131–

142, 2015. doi: 10.1145/2786805.2786874. URL http://doi.acm.org/10.1145/

2786805.2786874. 3

[71] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan. Synthesizing

racy tests. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 175–

185, 2015. doi: 10.1145/2737924.2737998. URL http://doi.acm.org/10.1145/

2737924.2737998. 3

[72] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.

Eraser: A dynamic data race detector for multithreaded programs. ACM Transactions on

Computer Systems (TOCS), 15(4):391–411, 1997. 111, 113

[73] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas E. Ander-

son. Eraser: A dynamic data race detector for multi-threaded programs. In Proceedings

of the Sixteenth ACM Symposium on Operating System Principles, SOSP, pages 27–37,

1997. doi: 10.1145/268998.266641. URL http://doi.acm.org/10.1145/268998.

266641. 3

[74] Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, Peter Lammich, and Markus Müller-Olm.

Static analysis of interrupt-driven programs synchronized via the priority ceiling protocol.

In Proc. ACM SIGPLAN-SIGACT Principles of Programming Languages (POPL), pages

125

	Title
	Acknowledgements
	Abstract
	Contents

