RATCOP: Relational Analysis Tool for Concurrent
Programs

Suvam Mukherjee!, Oded Padon?, Sharon Shoham?, Deepak D’Souza', and
Noam Rinetzky?

1 Indian Institute of Science, India
2 Tel Aviv University, Israel

Abstract. In this paper, we present RATCOP, a static analysis tool for efficiently
computing relational invariants in race free shared-variable multi-threaded Java
programs. The tool trades the standard sound-at-all-program-points guarantee for
gains in efficiency. Instead, it computes sound facts for a variable only at program
points where it is “relevant”. In our experiments, RATCOP was fairly precise
while being fast. As a tool, RATCOP is easy-to-use, and easily extensible.

1 Introduction

Writing efficient and correct multi-threaded programs is an onerous task, since a multi-
threaded program admits a large set of possible behaviors. As a result, such programs
provide fertile ground for many insidious defects: the bugs are difficult to detect, diffi-
cult to reproduce, and can result in unpredictable failures. Thus, developers are greatly
aided by tools which can automatically report such defects.

Unfortunately, designing algorithms which can automatically reason about behav-
iors of concurrent programs is also a very hard problem. Key to the difficulty lies in ac-
counting for the large set of inter-thread interactions. Static analysis algorithms, based
on the abstract interpretation framework [3], compute sound approximations of the set
of “concrete states” arising at each program point. With this notion of soundness, a
precise static analyzer does not usually scale, whereas a fast analysis is usually quite
imprecise [2].

In this paper, we describe RATCOP 3: Relational Analysis Tool for COncurrent
Programs, a tool to efficiently compute relational invariants in shared-memory data
race free multi-threaded Java programs. RATCOP does not handle procedure calls or
dynamic memory allocation. The abstract analyses implemented in RATCOP are based
on a novel thread-local semantics, called L-DRF [7]. Here, each thread maintains a local
copy of the global state. When a thread ¢ executes a non-synchronization command (an
assignment or an assume), it operates on its local state alone. Each release instruction
is associated with a “buffer”. When ¢ executes a release(m) command, it stores a copy
of its local state in the corresponding buffer. When a thread ¢’ subsequently acquires m,
it is allowed to observe the states stored at a set of “relevant” buffers. ¢’ then performs
a mix of these states to create a fresh local state. As [7] shows, for data race free (DRF)
programs, each trace in the standard semantics corresponds to some trace in the L-DRF

? The source code of RATCOP is available at https : //bitbucket.org/suvam/ratcop
© Springer International Publishing AG 2017

O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 229-233, 2017.
https://doi.org/10.1007/978-3-319-70389-3_18

230 S. Mukherjee et al.

semantics, and vice versa. Thus, the L-DRF semantics is a precise description of the
behaviors of DRF programs.

The L-DRF semantics allows one to rapidly port exist-
ing sequential analyses to analyses for race free programs.
Such analyses operate on a program graph called sync-

Input: Race Free Program P
CFG (first introduced in [4]), which is a collection of the l

control-flow graphs of each thread, augmented with syn- m
chronization edges between the release of a lock m, and an Jimple Representation of P
acquire of m. Consequently, the sync-CFG restricts inter- sync-CFG

thread propagations to synchronization points alone. The construction
resulting analyses satisfy a non-standard notion of sound- sync-CFG Representation of P
ness: the computed facts for a variable are sound only at pejational Data Flow .| sequentiar
program points where it is accessed. A more precise anal- ~ facts using Apron Analysis
ysis is obtained by parameterizing L-DRF with a user- fixpoint solution
defined partitioning of the program variables, resulting in
a semantics called R-DRF. Each partition is also called a Fig, 1. High-level overview
“region”. Assuming that the input program is free from re- of RATCOP
gion races [7], which is a stronger notion than data races,
the resulting abstract analyses are more precise than those derived from L-DRF.

In RATCOP, we instantiate abstractions of L-DRF and R-DRF to create several
relational analyses with varying degrees of precision. Our objective was two-fold: (i.)
to investigate the ease of porting a sequential relational analysis to an analysis for race
free concurrent programs (ii.) to investigate the efficiency and precision of the resulting
analysis. The base-line is an interval analysis derived from an earlier work [4]. RATCOP
makes use of the Soot [8] and Apron [5] libraries. RATCOP intelligently leverages the
race freedom property of the input program to minimize the number of inter-thread data
flow propagations, while retaining a fair degree of precision. As shown in [7], on the
benchmarks, RATCOP was able to prove upto 65% of the assertions, in comparison to
25% achieved by the base-line analysis. On a separate set of benchmarks, RATCOP was
upto 5 orders of magnitude faster than Batman, a recent static analyzer for concurrent
programs [6]. Finally, RATCOP is easy-to-use, quite robust, and easily extensible. In
this paper, we detail the architecture of RATCOP.

2 Architecture of RATCOP

RATCOP comprises around 4000 lines of Java code, and implements a number of re-
lational analyses with varying degrees of precision and scalability. Through command
line arguments, the tool can make use of the following three abstract domains provided
by Apron: convex polyhedra, octagons and intervals. It takes only a few lines of code
to extend RATCOP to use additional numerical abstract domains.

RATCOP assumes that the input program is free from data races, and does not
perform any explicit checks for the same. To detect region-level races, RATCOP imple-
ments the scheme outlined in [7], which reduces the problem of checking for region-
level races to that of checking for data races on specific “auxiliary” variables.

