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Abstract. A high-level race occurs when an execution interleaves
instructions corresponding to user-annotated critical accesses to shared
memory structures. Such races are good indicators of atomicity viola-
tions. We propose a technique for detecting all high-level dataraces in
a system library like the kernel API of a real-time operating system
(RTOS) that relies on flag-based scheduling and synchronization. Our
methodology is based on model-checking, but relies on a meta-argument
to bound the number of task processes needed to orchestrate a race. We
describe our approach in the context of FreeRTOS, a popular RTOS in
the embedded domain.

1 Introduction

Atomicity violations [13] precisely characterize the bugs in a method library that
arise due to concurrent use of the methods in the library. An execution of an
application program that uses the library is said to exhibit an atomicity violation
if its behaviour cannot be matched by any “serialized” version of the execution,
where none of the method calls interleave with each other. As one may expect,
such bugs can be pernicious and difficult to detect.

A necessary condition for an atomicity violation to occur in a library L
is that two method invocations should be able to “race” (or interleave) in an
execution of an application that uses L. In fact it is often necessary for two
“critical” access paths in the source code of the methods (more precisely the
instructions corresponding to them) to interleave in an execution, to produce
an atomicity violation. With this in mind, we could imagine that a user (or the
developer herself) annotates blocks of code in each method as critical accesses
to a particular unit of memory structures. We can now say that an execution
exhibits a “high-level” race (with respect to this annotation) if it interleaves two
critical accesses to the same memory structure.

Suppose we now had a way of finding the precise set R of pairs of critical
accesses that could race with each other, across all executions in all applications
programs that use L. We call this the problem of finding all high-level races in L.
The user can now focus on the set R, which is hopefully a small fraction of the
set of all possible pairs, and investigate each of them to see whether they could
lead to atomicity violations. We note that the user can soundly disregard the
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pairs outside R as they can never race to begin with, and hence can never be
the cause of any atomicity violation.

In this paper we are interested in the problem of finding all high-level races
in a library like the Application Programmer Interface (API) of a real-time ker-
nel. The particular system we are interested in is a real-time operating system
(RTOS) called FreeRTOS [23]. FreeRTOS is one of the most popular operat-
ing systems in the embedded industry, and is widely used in real-time embedded
applications that run on microcontrollers with small memory. FreeRTOS is essen-
tially a library of API functions written in C and Assembly, that an application
programmer invokes to create and manage tasks. Despite running on a single
processor or core, the execution of tasks (and hence the kernel API functions)
can interleave due to interrupts and context-switches, leading to potential races
on the kernel data-structures.

The kind of control-flow and synchronization mechanisms that kernels like
FreeRTOS use are non-standard from a traditional programming point of view.
To begin with, the control-flow between threads is very non-standard. In a typ-
ical concurrent program, control could potentially switch between threads at
any time. However in FreeRTOS, control switching is restricted and depends
on whether interrupts have been disabled, the value of certain flag variables
like SchedulerSuspended, and whether the task is running as part of an inter-
rupt service routine (ISR). Secondly, FreeRTOS does not use standard synchro-
nization mechanisms like locks, but relies instead on mechanisms like disabling
interrupts and flag-based synchronization. This makes it difficult to use or adapt
some of the existing approaches to high-level race detection like [3,28] or classi-
cal datarace detection like [9,29], which are based on standard control-flow and
lock-based synchronization.

An approach based on model-checking could potentially address some of the
hurdles above: one could model the control-flow and synchronization mecha-
nism in each API function faithfully, create a “generic” task process that non-
deterministically calls each API function, create a model (say M,,) that runs n
of these processes in parallel, and finally model-check it for data-races. But this
approach has some basic roadblocks: certain races need a minimum number of
processes running to orchestrate it—how does one determine a sufficient num-
ber of processes n that is guaranteed to generate all races? Secondly, even with
a small number of processes, the size of the state-space to be explored by the
model-checker could be prohibitively large.

The approach we propose and carry out in this paper is based on the model-
checking approach above, but finds a way around the hurdles mentioned. The
key idea is to create a set of reduced models, say M4, in which each model
essentially runs only three API functions at a time. We then argue that a race
that shows up in M,,, for any n, must also be a race in one of the reduced models
in M,.q. Model-checking each of these reduced models is easy, and gives us a
way of finding all data-races that may ever arise due to use of the FreeRTOS
API. We note that the number of API functions to run in each reduced model
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(three in this case), and the argument of sufficiency, is specific to FreeRTOS. In
general, this will depend on the library under consideration.

On applying this technique to FreeRTOS (with our own annotation of critical
accesses) we found a total of 48 pairs of critical accesses that could race. Of
these 10 were found to be false positives (i.e. they could not happen in an actual
execution of a FreeRTOS application). Of the remaining, 16 were classified as
harmful, in that they could be seen to lead to atomicity violations. The bottom-
line is that the user was able to disregard 99.8% of an estimated 41,000 potential
high-level races.

In the next couple of sections we describe how FreeRTOS works and our
notion of high-level races in its context. In Sect. 4 we describe how we model
the API functions and control-flow in Spin, and give our reduction argument
in Sect. 5. We describe our experimental results in Sect. 6 and related work in
Sect. 7.

2 Overview of FreeRTOS

FreeRTOS [23] is a real-time kernel meant for use in embedded applications that
run on microcontrollers with small to mid-sized memory.

It allows an application to organise itself
int main(void) {

into multiple independent tasks (or threads)
that will be executed according to a priority-
based preemptive scheduling policy. It is imple-
mented as a library of functions (or an
APIT) written mostly in C, that an applica-
tion programmer can include with their code
and invoke as functions. The API provides
the programmer ways to create and schedule
tasks, communicate between tasks (via message
queues, semaphores, etc.), and carry out time-
constrained blocking of tasks.

Figurel shows a simple FreeRTOS appli-
cation. In main the application first creates a
queue with the capacity to hold a single mes-
sage of type int. It then creates two tasks
called “Prod” and “Cons” of priority 2 and 1
respectively using the TaskCreate API func-
tion which adds these two tasks to the “Ready”
list. The FreeRTOS scheduler is then started
by the call to StartScheduler. The scheduler
schedules the Prod task first, being the high-
est priority ready task. Prod sends a message
to the queue, and then asks to be delayed for
two time units. This results in Prod being put
into the “Delayed” list. The next available task,

QueueHandle q;
q = QueueCreate(1, sizeof (int));
TaskCreate(prod, "Prod", 2, ...);
TaskCreate(cons, "Cons", 1, ...);
StartScheduler();

h 4

void prod(void* params) {
for(;;) {
QueueSend(q,...);
TaskDelay(2);
¥
¥

void cons(void* params) {
for(;;) {
QueueReceive(q,...);

b

¥
I I
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Prod
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Idle -‘

Time (tick interrupts) ——=

Fig.1l. An example FreeRTOS
application and its execution
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Cous, is run next. It dequeues the message from the queue, but is blocked when
it tries to dequeue again. The scheduler now makes the Idle task run. A timer
interrupt now occurs, causing an ISR called IncrementTick to be run. This rou-
tine increments the current tick count, and checks the delayed list to see if any
tasks need to be woken up. There are none, so the Idle task resumes execution.
However when the second tick interrupt occurs, the ISR finds that the Prod task
needs to be woken up, and moves it to the ready list. As Prod is now the highest
priority ready task, it executes next. This cycle repeats, ad infinitum.

The FreeRTOS kernel maintains a bunch of data-structures, variables and
flags, some of which are depicted in Fig. 2. Tasks that are ready to run are kept in
the ReadyTasksList, an array which maintains—for each priority—a pointer to
a linked list of tasks of that priority that are ready to run. When a running task
delays itself, it is moved from the ReadyTasksList to the DelayedTaskList,
with an appropriate time-to-awake value. User-defined queues, like q in the
example application, are maintained by the kernel as a chunk of memory to
store the data (shown as QueueData in the figure), along with an integer vari-
able MessagesWaiting that records the number of messages in the queue, and
two associated lists WaitingToSend and WaitingToReceive that respectively
contain the tasks that are blocked on sending to and receiving from the queue.

Even though FreeRTOS applications typically run on a single processor (or
a single core of a multi-core processor), the kernel API functions can interact
with each other in an interleaved manner. While a function invoked by the cur-
rent task is running, there could be an interrupt due to which an ISR runs,
which in turn may either invoke another API function, or unblock a higher
priority task which goes on to execute another API function. The FreeRTOS
API functions thus need to use some kind of synchronization mechanism to
ensure “exclusive” access to the kernel data-structures. They do so in a vari-
ety of ways, to balance the trade-off between securing fully exclusive access and
not losing interrupts. The strongest exclusion is achieved in a “critical section,”
where an API function disables interrupts to the processor, completes its crit-
ical accesses, and then re-enables interrupts. During such a critical section no
preemption (and hence no interleaving) is possible. The second kind of exclu-
sion is achieved by “suspending” the scheduler. This is done by setting the ker-
nel flag SchedulerSuspended to 1. While the scheduler is suspended (i.e. this
flag is set), no other task will be scheduled to run; however, unlike in a criti-
cal section, interrupts can still occur and an ISR can execute some designated
API functions (called “fromISR” functions which are distinguished from the
other “task” functions). The implicit protocol is that these functions will check
whether the SchedulerSuspended flag is set, and if so they will not access cer-
tain data-structures like the ReadyTasksList, but move tasks when required to
the PendingReadyList instead. Figure 2 shows some of the structures protected
by the SchedulerSuspended flag.

The final synchronization mechanism used in FreeRTOS is a pair of per-user-
queue “locks” (actually flags which also serve as counters) called RxLock and
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TxLock, that protect the WaitingToReceive
and WaitingToSend lists associated with the
queue. When a task executes an API func-
tion that accesses a user-queue, the function
sets these locks (increments them from their
initial value of —1 to 0). Any fromISR func-
tion that now runs will now avoid accessing
the waiting lists associated with this queue,
and instead increment the corresponding
lock associated with the queue to record the
fact that data has been added or removed
from the queue. When the interrupted func-
tion resumes, it will move a task from the
waiting list back to the ready list, for each
increment of a lock done by an ISR. These
locks and the lists they protect are also
depicted in Fig. 2.

Figure 3 shows parts of the !
implementation of two FreeR-
TOS APIs. The QueueSend
function is used by a task to
enqueue an item in a user-
defined queue pxQ. Lines 3- 4
9 are done with interrupts 10
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Fig. 2. Kernel data-structures and
protecting flags in FreeRTOS

ENABLE_INTERRUPTS() ;

11 return PASS;

disabled, and corresponds to 5 3

int QueueSend(QHandle pxQ, void *ItemToQueue) {
// Repeat till successful send
2 DISABLE_INTERRUPTSQ);

3 if (!QueueFull(pxQ)) { // Queue is not full
4 // Copy data to queue

5 CopyDataToQueue (pxQ, ItemToQueue);

6 if (!empty (pxQ->WaitingToReceive)) {

7 ... // Move task from WaitingToReceive
8 ... // to ReadyTasksList

the case when there is place 13

in the queue: the item is
enqueued, a task at the head of
WaitingToReceive is moved to
the ReadyTasksList, and the
function returns successfully. In
lines 14-26, which corresponds
to the case when the queue is
full, the function enables inter-
rupts, checks again that the
queue is still full (since after
enabling interrupts, an ISR
could have removed something
from the queue), and goes on
to move itself from the Ready
queue to the WaitingToSend
list of pxQ. This whole part is
done by first suspending the
scheduler and locking pxQ, and
finally unlocking the queue and
resuming the scheduler. The
call to LockQueue in line 16

// Reach here when queue is full

14 ENABLE_INTERRUPTS();

15 ++SchedulerSuspended; // Suspend scheduler

16 LockQueue(pxQ);//Inc Tx(Rx)Lock with ints disabled
17 if(QueueFull(pxQ)) { // Check if queue still full

18 ... // Move current task from ReadyTasksList
19 ... // to WaitingToSend
20 }

21 UnlockQueue(pxQ);//Move tasks from waiting lists
22 // and unlock, with ints disabled

23 --SchedulerSuspended; // Resume scheduler

24 if (...) { // higher priority task woken

25 YIELDQ);

26}

void IncrementTick() {
1 if(SchedulerSuspended == 0) {

2 ++TickCount;

3 if (TickCount == 0) {

4 ... // swap delayed lists

5 DelayedTaskList = OverflowDelayedTaskList;
6 }

7 ... // Move tasks whose time-to-awake is now,
8 . // from DelayedTaskList to ReadyTasksList.
9 }

10 else {

11 ++MissedTicks;

12}

}

Fig. 3. Excerpts from FreeRTOS functions
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increments both RxLock and TxLock. The call to UnlockQueue in line 21 decre-
ments RxLock as many times as its value exceeds 0, each time moving a task
(if present) from WaitingToSend to Ready. It does a similar sequence of steps
with TxLock. Both these functions first disable interrupts and re-enable them
once their job is done. Finally, in lines 24-26, the function checks to see if it has
unblocked a higher priority task, and if so “yields” control to the scheduler.

The second API function in Fig.3 is the IncrementTick function that is
called by the timer interrupt, and which we consider to be in the fromISR cat-
egory of API functions. If the scheduler is not suspended, it increments the
TickCount counter, and moves tasks in the DelayedTaskList whose time-to-
awake equals the current tick count, to the Ready list. If the scheduler is sus-
pended, it simply increments the MissedTicks counter.

3 High-Level Races in FreeRTOS

In this section we describe our notion of a high-level race in a system library
like FreeRTOS. Essentially a race occurs when two “critical” access paths in two
API functions interleave. We make this notion more precise below.

Consider a system library L. Our notion of a race in L is parameterized
by a set S of shared memory structures maintained by the library, and a set
C of “critical accesses” of structures in §. The set of structures in S is largely
determined by the developer’s design for thread-safe access. We can imagine
that the developer has in mind a partition of the shared memory structures into
“units” which can be independently accessed: thus, it is safe for two threads
to simultaneously access two distinct units, while it is potentially unsafe for
two threads to access the same unit simultaneously. For instance, in FreeRTOS,
the set S could contain shared variables like SchedulerSuspended, or shared
data-structures like ReadyTasksList, or an entire user-queue. The set of critical
accesses C would comprise contiguous blocks of code in the API functions of L,
each of which corresponds to an access of one of these units in S. The accesses
are “critical” in that they are not meant to interleave with other accesses to the
same unit of structures. Each critical access comes with a classification of being
a write or read access to a particular shared structure v in S. For example, we
could have the block of code in lines 17-20 of the QueueSend function in Fig. 3,
as a critical write to the user-queue structure, in C. Finally, we say that a pair
of accesses in C are conflicting if they both access the same structure v in & and
at least one is a write access.

An execution of an application program A that uses L—an L-execution for
short—is an interleaving of the execution of the tasks (or threads) it creates. An
execution of a task in turn is a (feasible) sequence of instructions that follows
the control-flow graph of its compiled version. Since these tasks may periodically
invoke the functions in L, portions of their execution will correspond to the
critical paths in these functions. We say that an L-execution exhibits an (S,C)
high-level race (or just (S, C)-race for short) on a structure v in S, if it interleaves
the execution paths corresponding to two conflicting critical accesses to v (i.e.
the second critical access begins before the first ends).
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When do we say an (S, C)-race is “harmful”? We can use the notion of atom-
icity violation from [13] (see also [10]) to capture this notion. Consider an L-
execution p. Each task in the application may invoke functions in L along p,
and some of these invocations may overlap (or interleave) with invocations of
functions of L in other tasks. A linearized version of p follows the same sequence
of invocations of the functions in L along p, except that overlapping invocations
are re-ordered so that they no longer overlap. We refer the reader to [17] for a
more formal definition of linearizability. We can now say that an L-execution p
exhibits an atomicity violation if there is no linearized version of the execution
that leaves the shared memory structures in the same state as p. This definition
differs slightly from [13] in that we prefer to use the notion of linearizability
rather than serializability.

For a given (S8,C), we say that an (S,C)-race is harmful if there is an L-
execution that contains this race, exhibits an atomicity violation, and this race
plays a role (possibly along with other threads) in producing this atomicity
violation. Otherwise we say the race is benign. Finally, we say that a given (S,C)
pair is safe for L, if every L-execution that exhibits an atomicity violation also
exhibits an (S,C)-race. We note that we can always obtain a safe (S,C) by
putting all memory structures into a single unit in S and entire method bodies
into C. However this would lead to lots of false positives, and it is thus preferable
to have as finely-granular an (S,C) as possible.

We now proceed to describe our choice of what we believe to be safe choice
of § and C for FreeRTOS. Some natural candidates for units in S are the various
task lists like ReadyTasksList and DelayedTaskList. For a user-defined queue,
one could treat the entire queue—comprising QueueData, MessagesWaiting, and
the WaitingToSend and WaitingToReceive lists—as a single unit. However, this
view would go against the fact that, by design, a task could be accessing the
WaitingToSend component, while an ISR accesses the QueueData component.
Hence, we keep each component of a user-defined queue as a separate unit in S.
Finally, we include all shared flags like SchedulerSuspended, pointer variables
like CurrentTCB, and counters and locks like TickCount and xRxLock, in S.
Corresponding to this choice of units in S, we classify, for example, the following
blocks of code as critical accesses in C: line 3 of the QueueSend function as a
read access of MessagesWaiting, line 5 as a write to QueueData, line 6 as a
read of WaitingToSend, and lines 7-8 as a write to both WaitingToReceive
and ReadyTasksList.

We now give a couple of examples of races with respect to the set of structures
S and accesses C described above. Assume for the sake of illustration, that the
QueueSend function did not disable interrupts in line 2. Consider an execution
of the example application in Fig. 1, in which the Prod task calls the QueueSend
function, and begins the critical write to ReadyTasksList. At this point a timer
interrupt comes and causes the IncrementTick ISR to run and execute the
critical write to ReadyTasksList in lines 7-8. This execution would constitute
a race on ReadyTasksList.
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As a second example, consider the write access to SchedulerSuspended in
the equivalent of line 15 of the QueueReceive function, and the read access of
the same variable in line 1 of IncrementTick. Then an execution of the example
application of Fig.1 in which Cons calls the QueueReceive function when the
queue is empty and executes the equivalent of line 15 to suspend the scheduler,
during which it is interrupted by the IncrementTick ISR which goes on to
execute line 1. This execution constitutes a race between the QueueReceive and
IncrementTick API functions on the SchedulerSuspended variable.

The race on ReadyTasksList above is an example of a harmful race since it
could lead to the linked list being in an inconsistent state that cannot be pro-
duced by any linearization of the execution. The race on SchedulerSuspended
turns out to be benign, essentially due to the variable being declared to be
volatile (so reads/writes to it are done directly from memory), and fact that an
ISR runs to completion before we can switch back to QueueReceive.

4 Modelling FreeRTOS in Spin

In this section we describe how we model the FreeRTOS API and check for (S, C)-
races using the model-checking tool Spin. Spin’s modelling language Promela can
be used to model finite-state concurrent systems with standard communication
and synchronization mechanisms (like message channels, semaphores, and locks).
One can then model-check the system model to see if it satisfies a given state
assertion or LTL property. For more details on Spin we refer the reader to [18].

Our first aim is to generate a Promela model M,, which captures the possible
interleavings of critical accesses in any FreeRTOS application with at most n
tasks. To make this more precise, consider a FreeRTOS application that—along
any execution—creates at most n tasks. We denote such an application by A,,.
We now define a Promela model M,, that has the following property (P):

For every execution of A,, which exercises the critical accesses within
the FreeRTOS API functions in a certain interleaved manner, there is a
corresponding execution in M, with a similar manner of interleaving.

For a given n, the Promela model M, is built as follows. We introduce four
semaphores called task, sch, isr, and schsus to model the possible control
switches between processes. Recall that a (binary) semaphore has two possible
states 0 and 1, and blocking operations up and down which respectively change
the state from 0 to 1 and 1 to 0. Initially all the semaphores are down (i.e. 0)
except sch which is 1 to begin with. The semaphores are used to indicate when a
particular API function is enabled. For example when the sch semaphore is up,
the scheduler process—which first tries to down the sch semaphore—is enabled.
Similarly, the task semaphore controls when a task function is enabled, and
the isr semphore controls when a fromISR function is enabled. The schsus
semaphore is used to ensure that whenever a task function is interrupted while
the scheduler is suspended, control returns to the interrupted task function only.
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inline QueueSend() { inline interrupt() {
// do in a loop if
interrupt ) ; :: SchedulerSuspended==0 ->
// atomically, so no interrupts up(isr); down(task)
_MessagesWaiting++; :: SchedulerSuspended==1 ->
_MessagesWaiting--; up(isr); down(schsus)
if :: skip;
:: skip -> fi}
// Copy data to queue
_queueData += 2; _queueData -= 2; inline LockQueue() {
// Check if WaitingToReceive is non-empty //Inc Tx(Rx)Lock with ints disabled
_WaitingToReceive++; _WaitingToReceive--; _TxLock +=2; TxLock++;
// Move task from WaitingToReceive to Ready _TxLock -= 2;
_WaitingToReceive += 2; _WaitingToReceive -= 2; _RxLock +=2; RxLock++;
_ReadyTasksList += 2; _ReadyTasksList -= 2; _RxLock -= 2;}
:: skip;
fi inline UnlockQueue() {
// end of atomic, so interrupts enabled // atomically
interrupt ) ; do
if :: TxLock > 0 -> ... --TxLock;
:: ++SchedulerSuspended; interrupt(); //Move tasks from
LockQueue(); interrupt(); //WaitingToReceive to Ready
// Move current task from Ready to WaitingToSend :: TxLock = 0 -> break;
_ReadyTasksList += 2;interrupt();_ReadyTasksList -= 2; od
_WaitingToSend += 2;interrupt();_WaitingToSend -= 2; TxLock = -1; // unlock queue
UnlockQueue(); interrupt(); //end atomic
--SchedulerSuspended; // Resume scheduler interrupt () ;
if ... // Similarly for RxLock}
:: up(sch); down(task); // Yield
:: skip;
fi
:: skip;
fi
}

Fig. 4. Promela model of the QueueSend API function

Each API function is modelled as a Promela function with the same name.
We model variables of FreeRTOS that are critical to maintaining mutual exclu-
sion, like SchedulerSuspended, RxLock and TxLock. We capture condition-
als involving these variables and updates to these variables faithfully, and
abstract the remaining conditionals conservatively to allow control-flow (non-
deterministically) through both true and false branches of the conditional.

For each structure v € S, we introduce a numeric variable called “_v”, which
is initialized to 0. For each critical write access to a structure v in an API function
F, we add a statement v += 2 (short for v = _v + 2) at the beginning of
the block, and the statement v -= 2 at the end of the block, in the Promela
version of F. Similarly, for a read access of v we add the statements _v++ and
_v-- at appropriate points in the function. The possible context-switches due
to an interrupt or yield to the scheduler are captured by uping the isr or sch
semaphore. In particular, at any point in a function where an interrupt can occur
(i.e. whenever interrupts are not disabled or an ISR itself is running), we add
a call to interrupt() which essentially up’s the isr semaphore and waits till
a down is enabled on the task semaphore. The Promela function corresponding
to the QueueSend function is shown in Fig. 4.

Each task in A, is abstracted and conservatively modelled by a single
process called taskproc in M,,, which repeatedly chooses a task API function
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proctype scheduler() {

do
: down(sch);
if Task Scheduler
:: SchedulerSuspended==0 -> up(task)
:: SchedulerSuspended==1 -> up(schsus) B |
:: up(isr) ) ¥ N p LS N
fi ‘ down(task) ‘ down(sch) ‘

od

! J_‘ ,—|‘l
(sched enab) (sched susp)
. . s N S —

proctype taskproc() { : / s 7 - i
do ‘ up(isr) ‘ ‘up(task) up(isr)‘ up(schsus)

down(task); QueueSend(); up(sch); lnterru;;t

. (sched enab) I l _
:: down(task); TaskDelay(); up(sch); ‘ down(task)‘

od

}

proctype isrproc() { |
do ' ) ISR
:: down(isr); IncrementTick(); up(sch); ‘ up(isr) ‘
58 e Interrupt ‘_;
:: down(isr); QueueSendFromISR(); up(sch); (schedsusp) _y N — —
od down(schsus)‘ ‘ down(isr) ‘

} € 4 y

init { p \ Ji
run scheduler(); Yield ‘ up(sch) ‘ up(sch) ‘
// start n task and 1 ISR process —_— S 7
run taskproc(); ...; run taskproc(); g I—
run isrproc();

}

Fig. 5. (a) Promela model M, and (b) Control flow and switching in M,

non-deterministically and calls it. In a similar way, we model the fromISR
APIT functions, and the isrproc process repeatedly invokes one of these non-
deterministically. The Promela code of model M, is depicted in Fig.5(a).
Thus M,, runs one scheduler process, one isrproc process, and n taskproc
processes. Figure 5(b) illustrates the way the semaphores are used to model the
control-switches.

Let us define what we consider to be a race in M,,. Let the statements in
M, be si,...,8,,. If statement s; is part of the definition of API F' we write
I'(s;) = F. An execution of M,, is a sequence of these statements that follows
the control-flow of the model, and is feasible in that each statement is enabled
in the state in which it is executed. We say an execution p of M, exhibits a
datarace on a structure v, involving statements s; and s; if (a) s; and s; are
both increments of _v, (b) at least one increments v by 2, and (c) p is of the
form m - s; - ™2 - s; with the segment 7 not containing the decrement of _v
corresponding to s;. Note that the value of _v along p will exceed 2 after s;.

It is not difficult to see that M,, satisfies the property (P) above. Conse-
quently, any race on a structure v € S in application A,, will have a correspond-
ing execution in M,, which exhibits a datarace on _v. Thus, it follows that by
model-checking M,, for the invariant

((_ReadyTasksList < 3) && (_DelayedTaskList < 3) && ...)
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we will find all races that may arise in an n-task application 4,. We note that
there may be some false positives, due to conservative modelling of conditionals
in the API functions, or because of 3 consecutive read accesses.

There are now two hurdles in our path. The first is that we need to model-
check M, for each n, as it is possible that some races manifest only for certain
values of n. Secondly, model-checking even a single M, may be prohibitively
time-consuming due to the large state-space of these models. In fact, as we
report in Sect. 6, Spin times out even on M,, after running for several hours. We
propose a way out of this problem, by first proving a meta-claim that any race
between API functions F' and G in M,,, will also manifest in a reduced model,
Mp 1, in which we have a process that runs only F, one that runs only G,
another that runs a fromISR function 7, along with the scheduler process, and
an ISR process that runs only the IncrementTick function. We denote this set
of reduced models by M,.;. We then go on to model-check each of these reduced
models for dataraces. Though there are now thousands of models to check, each
one model-checks in a few seconds, leading to tractable overall running time.

In the next section we justify our meta-claim.

5 Reduction to M,

Before we proceed with our reduction claim, we note that this claim may not
hold for a general library. Consider for example the library L with three API

functions F, G, and H shown Fro ¢ cO { HO {

: ; \ ; ... 4 ... 7 ...

in Fig.6. Suppose the variable x o redlos 5 if (flag) 5 flog = trae:
belongs to the set of structures & 3 ... 6 write(x); 9 ...

and the lines 2 and 6 constitute ?* ¥ ¥

a critical read and write access,
respectively, to x. Then the (S, C)-
race on x involving lines these
accesses will never show up in any reduced model in M4, since we need all
three functions to execute in order to produce this race. Thus, as we do for
FreeRTOS below, any choice regarding the structure of models in M4 and the
argument for its sufficiency, must be tailored for a given library and the way it
has been modelled.
We now describe our reduction claim for our FreeRTOS model:

Fig. 6. Example library where M.s does not
suffice.

Theorem 1. Let n > 1, and let p be an execution of M, exhibiting a race
involving statements s; and s; of M,. Then there exists a model M € M,eq,
and an execution preq of M, which also exhibits a race on s; and s;.

We justify this claim in the rest of this section. By the construction of M,,,
the execution p must be of the form

71 - down(task) - my - ;- up(isr) - 73 - g

where s; is a statement in API function F', and down(task) - 7o - §; - up(isr) is
the portion of p corresponding to the racy invocation of F'. We note that s; must
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be part of a task function, while s; could be part of either a task or fromISR
function.

We consider two cases corresponding to whether the SchedulerSuspended
flag is 1 or O after the statement s; in p. Let us consider the first case where
SchedulerSuspended is 1 after s;. In this case, the statement s; must belong
to a fromISR function, say I. This is because the scheduler remains suspended
after s; in p (only F' can resume it, and F' never executes after s; - up(isr) in
p), and hence no task API function can run in this suffix of p. Further, since
interrupts run to completion, the path w3 must be of the form 7} - 74 - s, where
74 comprises a sequence of fromISR functions, and 74 - 55, is an initial path in I,
beginning with a down(isr).

F 1 ] G F 1 Consider the path o

that begins in F, con-

- tains some interrupting
paths that visit other

down(apl)-l down(apl)-l task or fromISR func-

skip< tions, and ends at s; in

F. We define an “un-

mp " lock lock| wnint(rp)  interrupted” version of

skip my, denoted wunint(ma),

anlock unlOck) to be the path that

s s :I replaces each interrupt

up (isr) , up (isr) path by a skip state-
T3

ment (note that this
- - non-deterministic branch
exists in each interrupt
call). In addition, the

™3

= sk =Sk

p Pred portion of 7y that goes
through an UnlockQueue
Fig. 7. The execution p and its reduction preq call may have to change,

since the path through an

UnlockQueue depends on the values of RxLock and TxLock and these values may
have changed by eliding the interrupt paths from 75. Nevertheless, there is a path
through UnlockQueue enabled for these new values, and we use these paths to
obtain a feasible path unint(ms) through F.

We can now define the reduced path p,.q we need as follows (see Fig.7):
Pred = down(sch) - up(task) - down(task) - unint(ms) - s; - up(isr) - 1y - Sk.

We need to argue that prq is a valid execution of Mg, ; (here “¢” stands
for an arbitrary task function). We have already argued that

down(sch) - up(task) - down(task) - unint(my) - s; - up(isr)

is a valid execution of the model. Let the resulting state after this path be u’. It
remains to be shown that the path 74 - sy is a feasible initial path in I, beginning
in state u’.

Let us call two states v and w equivalent if they satisfy the following condi-
tions: (a) the value of the control semaphores are the same (i.e. v(isr) = w(isr),
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etc.), (b) the value of SchedulerSuspended is the same, (c¢) v(RxLock) = —1
iff w(RxLock) = —1 and v(RxLock) > 0 iff w(RxLock) > 0, and (d) similarly
for TxLock. By inspection of the conditionals in any fromISR function J in the
model, we observe that the set of feasible initial paths through J, beginning from
equivalent states is exactly the same. Let u be the resulting state after the prefix
6 =y - down(task) - ma - s; -up(isr) of p, and let v be the resulting state after
0-mh-up(isr). To argue that 74 sy is a feasible initial path in I beginning from
state u’, it is thus sufficient to argue that the states v’ and v are equivalent.

To do this we argue that (a) v’ and u are equivalent, and (b) that u and v are
equivalent. To see (a), clearly the value of the control semaphores are identical
in v and «'. Further, the value of SchedulerSuspended continues to be 1 in v’
as well, as we are only excising paths from 7y that are “balanced” in terms of
setting and unsetting this flag. Finally, if the value of RxLock was —1 in wu, it
continues to be —1 in u’ as well, since an UnlockQueue always resets the flag
to —1. If the value of RxLock was 0 or more in u, then we must be between a
LockQueue and its corresponding UnlockQueue. In this case the value of RxLock
would have been set to 0 in u’. A similar argument holds for TxLock as well,
and we are done. To see that the claim (b) holds, we note that only fromISR
functions can execute between u and v, and they always either leave the value
of RxLock and TxLock intact, or increment them if their value was already > 0.

Thus, preq is a valid execution of Mg, r, and it clearly contains a race on
s; and si. This completes the proof of the first case we were considering. The
second case where SchedulerSuspended is 0 after ¢ is handled in a similar way.
The detailed proof is available in [21].

6 Experimental Results

Of the 69 API functions in FreeRTOS v6.1.1, we model 17 task and 8 fromISR
functions. These 25 library functions form the “core” of the FreeRTOS API. The
remaining 44 functions are either defined in terms of these core functions, or they
simply invoke the core functions with specific arguments, or are synchronization
constructs. For example, the functions xQueuePeek and xSemaphoreTake are
listed as library functions. However, they are defined in terms of the core func-
tion xQueueGenericReceive, which we do model. Thus, modelling these addi-
tional functions would be redundant: the races would still be in the core library
functions which they invoke.

Our tool-chain is as follows: the user provides a Promela file which models
each library function, as well as a template for the reduced models. Next, a
Java program creates the “reduced” models (2023 of them in this case) from
this Promela template. We then verify these reduced models using Spin. The
output of the verification phase is a set of error trails, one corresponding to each
interleaving which results in the violation of an assertion. The trails are not in
a human readable format, so we need to perform a simulation run in Spin using
these trails. The output of the simulation run is a set of human readable error
traces. However, the number of such traces can be large (around 70,870 were
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generated during our experiments) and it is infeasible to manually parse them
to find the list of races. Instead, we have yet another Java program which scans
through these traces and reports the list of unique racing pairs. By a racing pair,
we mean statements (s;, sg) constituting the race, along with the data-structure
v involved (we also indicate a trace exhibiting the race).

While the model and the reduction argument need to be tailor-made for
different kernel APIs, the software component of the tool-chain is fairly straight-
forward to reuse. Given a Promela model of some kernel APT other than FreeR-
TOS, where the modelling follows the rules outlined in Sect. 4 (and the model is
shown to be reducible), the tool-chain can be used to detect races with minimal
changes.

An important point to consider here is the guarantees provided by the
Spin tool itself. Spin does not exhaustively search for all possible violations of an
assertion [18]. Instead, it is guaranteed to report at least one counter-example
if the property is not satisfied. Hence, we make use of an iterative strategy.
After each iteration, we change the assertion statement to suppress reporting
the detected races again. We continue this process until no further assertion vio-
lations are detected by Spin. Thus, by the final iteration, we are guaranteed to
have flagged every high-level datarace.

All our experiments were performed on a quad-core Intel Core i7 machine
with 32GB RAM, running Ubuntu 14.04. We use Spin version 6.4.5 for our
experiments.

Evaluating My. The verification of My on our machine took up memory in
excess of 32 GB. As a result, we had to kill the verification run prematurely. Even
on on a more powerful machine with 4 quad-Xeon processors (16 cores), 128 GB
of RAM, running Ubuntu 14.04, the verification run took 39 GB of RAM, while
executing for more than 3 hours, before timing out. The total number of tracked
states was 4.43 x 10%. Using rough calculations, we estimated that the total
amount of memory needed to store the full state space of this model (assuming
that the size of a single state is 100 bytes) is around 1 TB. On the contrary, while
model-checking the 2023 reduced models, the RAM usage never exceeded 9 GB.

Evaluating M,eq. Recall that each Mp a1 € Mg comprises 5 processes:
the first process runs the task function F', the second runs the task function G,
and the third runs the ISR I (excluding the tick interrupt), the fourth runs
the tick interrupt in a loop, while the fifth process runs the scheduler. Since
there are 17 task functions and 7 fromISR functions (excluding the tick), we
generate 17 x 17 x 7 = 2023 models. We model check these reduced mod-
els in iterations, suppressing reported races to ensure they are not flagged
again in subsequent iterations. In particular, we suppress reporting races on
the SchedulerSuspended flag, which by design are aplenty. We have manually
verified (along with discussion with the FreeRTOS developers) that these races
are benign.

In the first iteration, the verification of M,.qy generated 38 assertion viola-
tions. Of these, 10 were false positives, owing to three consecutive read accesses
or the conservative modeling of the conditionals. Among the rest, 16 can be
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definitely classified as harmful. In the second iteration, the tool reported 10
assertion violations, all of them being potentially benign races involving the
variable pxCurrentTCB.

The cause was an anfOtGCted Tteration[# Violations|F.P.[Harmful[Benign?| Time
read of the variable in the func- 1 38 10] 16 12 | 15hr
. 2 10 - - 10 | 2.4 hr
tion vTaskResume. As there were 3 . - . 184 bt

several races involving this state-
ment (it would race with every
access, protected or otherwise, of
pxCurrentTCB in almost all other functions), we supressed races involving this
statement. With this change, we performed a third iteration of the verification
process, which resulted in no further assertion violations.

The FreeRTOS API is quite carefully written. Despite the complexity of
the possible task interactions, there are not many harmful races. Among the
16 harmful races detected after the first iteration, most involved the function
vQueueDelete, which deletes the queue passed to it as argument. Several opera-
tions are involved as part of the deletion (removal of the queue from the registry,
deallocating the memory assigned to the queue, etc.). Surprisingly, the set of
operations, which forms a critical access path for the queue data-structure, is
devoid of any synchronization. This causes critical access paths of the queue in
other functions, for example xQueueReceiveFromISR (which reads the contents
of the queue), to interleave with the path in vQueueDelete. The race is harm-
ful because functions can potentially observe an inconsistent (partially deleted)
state of the queue, which it would not otherwise observe along any linearized
execution. We reported this bug to the FreeRTOS developers, and they argue
that this is not serious since queue delete operations are rare and are usually
performed at the end of the application’s lifetime.

The other harmful races involve the QueueRegistry data-structure (which is
essentially an array), where addition and deletion of items in the QueueRegistry
can interleave, thereby causing a function to observe an inconsistent state of the
registry. Some of the sample races are given in Table. 1.

Fig. 8. Experimental evaluation of M4

Table 1. Some sample detected races. “H” indicates harmful races and “PB” indicates
possibly benign.

Structure Library functions involved Scenario H/PB

xQueueRegistry | P1: vQueueAddToRegistry While P1 reads the H
P2: vQueueUnregisterQueue |registry, P2 modifies it.
Read-write race

userQueue P1: vQueueDelete P2 sends data to a queue |H
P2:xQueueSend while it is being deleted
by P1. Write-write race
uxPriority P1: xTaskCreate P1 checks the value of PB
P2: vTaskPrioritySet uxPriority while it is being

set by P2. The result is
never an inconsistent state
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A summary of the various statistics of the experiments is given in Fig.8.
The running times are reported in hours. All artifacts of this work are available
online at https://bitbucket.org/suvam /freertos.

7 Related Work

Along with work on detecting high-level races and atomicity violations, we also
consider work on detecting classical (location-based) races as some of these tech-
niques could be adapted for high-level races as well. We group the work into three
categories below and discuss them in relation to our work. The table alongside
summarizes the applicability of earlier approaches to our problem setting.

Dynamic Analysis Based Approaches. Artho et al. [3] coined the term
“high-level datarace” and gave an informal definition of it in terms of accessing
a set of shared variables (what we call a unit in &) “atomically.” They define
a notion of a thread’s “view” of the set of shared variables, and flag potential
races whenever two threads have inconsistent views. They then provide a lock-
set based algorithm, for detecting view inconsistencies dynamically along an exe-
cution. Among the techniques for detecting atomicity violations, Atomizer [11]
uses the notion of left /right moving actions, SVD [31] uses atomic regions as sub-
graphs of the dynamic PDG, AVIO [20] uses interleaving accesses, and [30] uses
a notion of trace-equivalence; to check if a given execution exhibits an atomicity
violation. Techniques for dynamically detecting classical dataraces use locksets
computed along an execution (for example [5,24]), or use the happens-before
ordering (for example [7,12]), to detect races. None of these techniques apply
directly to the kind of concurrency and synchronization model of FreeRTOS
(there are no explicit locks, and no immediate analogue of the happens-before
relation). Most importantly, by design these techniques explore only a part of
the execution space and hence cannot detect all races.

Static Analysis Based Approaches. von Praun and Gross [28] and Pessanha
et al. [6] extend the view-based approach of [3] to carry out a static analysis to
detect high-level races. The notion of views could be used to obtain an annotation
of critical accesses (an S and C in our setting) for methods in a library. However
definition of views are lock-based and it is not clear what is the correspond-
ing notion in our setting, and whether it would correspond intuitively to what
we need.

Flannegan and Qadeer [13] give a type system based static analysis for prov-
ing atomicity of methods (i.e. the method’s actions can be serialized with respect
to interleavings with actions of another thread). The actions of a method are
typed as left/right-movers and the analysis soundly infers methods to be atomic.
Wang and Stoller [30] extend this type system for lock-free synchronization. In
our setting, the notion of left/right-movers is not immediate, and such an app-
roach will likely have a large number of false positives. Static approaches for
classical race detection (e.g. [9,27,29]) are typically based on a lockset-based
data-flow analysis, where the analysis keeps track of the set of locks that are
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“must” held at each access to a location and reports a race if two conflicting
accesses hold disjoint locks. In [1] the locksets are built into a type system which
associates a lock with each field declaration. All the approches above can handle
libraries and can detect all races in principle, but in practice are too imprecise
(lots of false positives) and often use unsound filters (for example [6,29]) that
improve precision at the expense of missing real races.

Schwarz et al. [25,26] provide a precise data-flow analysis for checking
races in FreeRTOS-like applications that handles flag-based synchronization and
interrupt-driven scheduling. The technique is capable of detecting all races, but
is applicable only to a given application rather than a library.

Model-Checking Approaches. In [2] Alur et al. study the problem of deciding
whether a finite-state model satisfies properties like serializability and lineariz-
ability. This approach is attractive as in principle it could be used to verify
freedom from atomicity violations. However, the number of threads need to be
bounded (hence they cannot handle libraries) and the running time is prohibitive
(exponential in number of transitions for serializability, and doubly-exponential
in number of threads for linearizability). Farzan and Madhusudan [10] consider
a stronger notion of serializability called “conflict serializability” and give a
monitoring algorithm to detect whether a given execution is conflict-serializable
or not. This also leads to a model-checking algorithm for conflict-serializability
based atomicity violations. Again, this is applicable only to applications rather
than libraries.

Several researchers have used model-checking tools like Slam, Blast, and
Spin to precisely model various kinds of control-flow and synchronization mech-
anisms and detect errors exhaustively [8,14-16,32]. All these approaches are for
specific application programs rather than libraries. Chandrasekharan et al. [4]
follow a similar approach to ours for verifying thread-safety of a multicore ver-
sion of FreeRTOS. However, the library there uses explicit locks and a standard
notion of control-flow between threads. Further, they use a model which is the
equivalent of Ms, which does not scale in our setting Fig. 9.

FreeRTOS-like | Handles | Can Detect
Earlier Work Concurrency | Libraries | all races
[3], [11], [31], [20], [30], [22], [5], [24], [7], No No No
[12], [32]
[27], [9], [29], [28], [6], [13], [30], [1], [4] No Yes Yes
[2], [10], [16], [19] No No Yes
[26], [25] Yes No Yes

Fig. 9. Applicability of earlier work to our setting.
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8 Conclusion

We have considered the problem of detecting all high-level races in a concurrent
library, as an aid to zeroing-in on atomicity-related bugs in the library. We pro-
pose a solution to this problem for the FreeRTOS kernel which is representative
of small embedded real-time kernels. The approach is based on model-checking
but crucially uses a meta-level argument to bound the size of the model.
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